ON A CLASS OF SOLUTIONS FOR A QUADRATIC DIOPHANTINE EQUATION

被引:0
作者
Somanath, Manju [1 ]
Raja, K. [1 ]
Kannan, J. [2 ]
Mahalakshmi, M. [2 ]
机构
[1] Bharathidasan Univ, Natl Coll, PG & Res Dept Math, Trichy, India
[2] Madurai Kamraj Univ, Ayya Nadar Janaki Ammal Coll Autonomous, Dept Math, Sivakasi, India
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2020年 / 19卷 / 11期
关键词
Diophantine equation; Pell's equation; linear transformation; integral solution; continued fraction expansion;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P := P(x) be a polynomial in Z[x]. In this manuscript, we think about the integral points of a bilinear Diophantine equation DE : alpha(2) - 90 beta(2) - 10 alpha - 1260 beta = 4401. We as well get hold of a few formulae and recurrence sequence to the integral points of (alpha(n), beta(n)) of DE.
引用
收藏
页码:1097 / 1103
页数:7
相关论文
共 10 条
[1]  
Arya S. P., 1991, MATH ED, V8, P23
[2]  
Baltus C., 1994, Comm. Anal. Theory Contin. Fractions, V3, P4
[3]  
BARBEAU EJ, 2003, PROB B MATH, pR7
[4]  
Edward H. P., 1996, GRADUATE TEXTS MATH, V50
[5]  
Hensley D, 2006, CONTINUED FRACTIONS, P1
[6]   SOLUTIONS OF NEGATIVE PELL EQUATION INVOLVING TWIN PRIME [J].
Kannan, J. ;
Somanath, Manju ;
Raja, K. .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (05) :869-874
[7]   PELLS EQUATIONS X2-MY2=-1,-4 AND CONTINUED FRACTIONS [J].
KAPLAN, P ;
WILLIAMS, KS .
JOURNAL OF NUMBER THEORY, 1986, 23 (02) :169-182
[8]  
Lenstra Jr H.W., 2002, NOT AM MATH SOC, V49, P182
[9]  
MATHEWS K, 2000, EXPO MATH, V0018, P00323
[10]  
Somanath Manju, 2019, INT J APPL MATH, V32, P443