Bivariate linear mixed models using SAS proc MIXED

被引:88
作者
Thiébaut, R
Jacqmin-Gadda, H
Chêne, G
Leport, C
Commenges, D
机构
[1] Univ Bordeaux 2, INSERM, Unite 330, ISPED, F-33076 Bordeaux, France
[2] Hop Bichat Claude Bernard, F-75877 Paris 18, France
关键词
bivariate random effects model; bivariate first order auto-regressive process; SAS proc MIXED; HIV infection;
D O I
10.1016/S0169-2607(02)00017-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bivariate linear mixed models are useful when analyzing longitudinal data of two associated markers. In this paper, we present a bivariate linear mixed model including random effects or first-order auto-regressive process and independent measurement error for both markers. Codes and tricks to fit these models using SAS Proc MIXED are provided. Limitations of this program are discussed and an example in the field of HIV infection is shown. Despite some limitations, SAS Proc MIXED is a useful tool that may be easily extendable to multivariate response in longitudinal studies. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 15 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   GENERAL-CLASS OF COVARIANCE-STRUCTURES FOR 2 OR MORE REPEATED FACTORS IN LONGITUDINAL DATA-ANALYSIS [J].
GALECKI, AT .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (11) :3105-3119
[3]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA [J].
LAIRD, NM ;
WARE, JH .
BIOMETRICS, 1982, 38 (04) :963-974
[4]  
Le Moing V, 2001, J ACQ IMMUN DEF SYND, V27, P372, DOI 10.1097/00126334-200108010-00007
[5]  
Lesaffre E, 1999, STAT MED, V18, P835, DOI 10.1002/(SICI)1097-0258(19990415)18:7&lt
[6]  
835::AID-SIM75&gt
[7]  
3.0.CO
[8]  
2-7
[9]  
LINDSTROM MJ, 1988, J AM STAT ASSOC, V83, P1014
[10]  
Littell R.C., 1996, SAS Systems for Mixed Models