Modular engineering for microbial production of carotenoids

被引:75
作者
Li, Cheng [1 ,2 ]
Swofford, Charles A. [1 ,2 ]
Sinskey, Anthony J. [1 ,2 ]
机构
[1] MIT, Dept Biol, Boston, MA 02139 USA
[2] Singapore MIT Alliance Res & Technol, Disrupt & Sustainable Technol Agr Precis, Singapore 138602, Singapore
来源
METABOLIC ENGINEERING COMMUNICATIONS | 2020年 / 10卷
关键词
Carotenoids; Synthetic biology; Metabolic engineering; Mevalonate; Isopentenol utilization pathway; Modular engineering; ISOPENTENYL DIPHOSPHATE ISOMERASE; OVERPRODUCING SACCHAROMYCES-CEREVISIAE; METHYLERYTHRITOL PHOSPHATE-PATHWAY; IMPROVE ASTAXANTHIN PRODUCTION; PHYTOENE SYNTHASE ACTIVITIES; ESCHERICHIA-COLI STRAIN; LYCOPENE PRODUCTION; DIRECTED EVOLUTION; MEVALONATE PATHWAY; GENE-EXPRESSION;
D O I
10.1016/j.mec.2019.e00118
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There is an increasing demand for carotenoids due to their applications in the food, flavor, pharmaceutical and feed industries, however, the extraction and synthesis of these compounds can be expensive and technically challenging. Microbial production of carotenoids provides an attractive alternative to the negative environmental impacts and cost of chemical synthesis or direct extraction from plants. Metabolic engineering and synthetic biology approaches have been widely utilized to reconstruct and optimize pathways for carotenoid over-production in microorganisms. This review summarizes the current advances in microbial engineering for carotenoid production and divides the carotenoid biosynthesis building blocks into four distinct metabolic modules: 1) central carbon metabolism, 2) cofactor metabolism, 3) isoprene supplement metabolism and 4) carotenoid biosynthesis. These four modules focus on redirecting carbon flux and optimizing cofactor supplements for isoprene precursors needed for carotenoid synthesis. Future perspectives are also discussed to provide insights into microbial engineering principles for overproduction of carotenoids.
引用
收藏
页数:12
相关论文
共 178 条
  • [1] Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review
    Adadi, Parise
    Barakova, Nadezhda Vasilyevna
    Krivoshapkina, Elena Fedorovna
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (24) : 5925 - 5947
  • [2] Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli
    Ajikumar, Parayil Kumaran
    Xiao, Wen-Hai
    Tyo, Keith E. J.
    Wang, Yong
    Simeon, Fritz
    Leonard, Effendi
    Mucha, Oliver
    Phon, Too Heng
    Pfeifer, Blaine
    Stephanopoulos, Gregory
    [J]. SCIENCE, 2010, 330 (6000) : 70 - 74
  • [3] Diversion of Flux toward Sesquiterpene Production in Saccharomyces cerevisiae by Fusion of Host and Heterologous Enzymes
    Albertsen, Line
    Chen, Yun
    Bach, Lars S.
    Rattleff, Stig
    Maury, Jerome
    Brix, Susanne
    Nielsen, Jens
    Mortensen, Uffe H.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (03) : 1033 - 1040
  • [4] Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    Alper, H
    Jin, YS
    Moxley, JF
    Stephanopoulos, G
    [J]. METABOLIC ENGINEERING, 2005, 7 (03) : 155 - 164
  • [5] Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets
    Alper, H
    Miyaoku, K
    Stephanopoulos, G
    [J]. NATURE BIOTECHNOLOGY, 2005, 23 (05) : 612 - 616
  • [6] Uncovering the gene knockout landscape for improved lycopene production in E. coli
    Alper, Hal
    Stephanopoulos, Gregory
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (05) : 801 - 810
  • [7] Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications-A Review
    Ambati, Ranga Rao
    Phang, Siew Moi
    Ravi, Sarada
    Aswathanarayana, Ravishankar Gokare
    [J]. MARINE DRUGS, 2014, 12 (01) : 128 - 152
  • [8] Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
    Anthony, Jennifer R.
    Anthony, Larry C.
    Nowroozi, Farnaz
    Kwon, Gina
    Newman, Jack D.
    Keasling, Jay D.
    [J]. METABOLIC ENGINEERING, 2009, 11 (01) : 13 - 19
  • [9] A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
    Apel, Amanda Reider
    d'Espaux, Leo
    Wehrs, Maren
    Sachs, Daniel
    Li, Rachel A.
    Tong, Gary J.
    Garber, Megan
    Nnadi, Oge
    Zhuang, William
    Hillson, Nathan J.
    Keasling, Jay D.
    Mukhopadhyay, Aindrila
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (01) : 496 - 508
  • [10] Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    Asadollahi, Mohammad A.
    Maury, Jerome
    Patil, Kiran Raosaheb
    Schalk, Michel
    Clark, Anthony
    Nielsen, Jens
    [J]. METABOLIC ENGINEERING, 2009, 11 (06) : 328 - 334