Topological protection of photonic mid-gap defect modes

被引:532
作者
Noh, Jiho [1 ]
Benalcazar, Wladimir A. [2 ]
Huang, Sheng [3 ]
Collins, Matthew J. [1 ]
Chen, Kevin P. [3 ]
Hughes, Taylor L. [2 ]
Rechtsman, Mikael C. [1 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[2] Univ Illinois, Dept Phys, Urbana, IL USA
[3] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA USA
基金
美国国家科学基金会;
关键词
STATES; CRYSTAL; PHASE;
D O I
10.1038/s41566-018-0179-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Defect modes in two-dimensional periodic photonic structures have found use in diverse optical devices. For example, photonic crystal cavities confine optical modes to subwavelength volumes and can be used for enhancement of nonlinearity, lasing and cavity quantum electrodynamics. Defect-core photonic crystal fibres allow for supercontinuum generation and endlessly single-mode fibres with large cores. However, these modes are notoriously fragile: small structural change leads to significant detuning of resonance frequency and mode volume. Here, we show that photonic topological crystalline insulator structures can be used to topologically protect the mode frequency at mid-gap and minimize the volume of a photonic defect mode. We experimentally demonstrate this in a femtosecond-laser-written waveguide array by observing the presence of a topological zero mode confined to the corner of the array. The robustness of this mode is guaranteed by a topological invariant that protects zero-dimensional states embedded in a two-dimensional environment-a novel form of topological protection that has not been previously demonstrated.
引用
收藏
页码:408 / 415
页数:8
相关论文
共 47 条
[1]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[2]  
[Anonymous], 2016, LECT NOTES PHYS
[3]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[4]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[5]   Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2017, 96 (24)
[6]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[7]   Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations [J].
Benalcazar, Wladimir A. ;
Teo, Jeffrey C. Y. ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2014, 89 (22)
[8]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[9]   Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States [J].
Blanco-Redondo, Andrea ;
Andonegui, Imanol ;
Collins, Matthew J. ;
Harari, Gal ;
Lumer, Yaakov ;
Rechtsman, Mikael C. ;
Eggleton, Benjamin J. ;
Segev, Mordechai .
PHYSICAL REVIEW LETTERS, 2016, 116 (16)
[10]   Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J].
Englund, D ;
Fattal, D ;
Waks, E ;
Solomon, G ;
Zhang, B ;
Nakaoka, T ;
Arakawa, Y ;
Yamamoto, Y ;
Vuckovic, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)