Modeling of hydrate-based CO2 capture with nucleation stage and induction time prediction capability

被引:19
|
作者
Dashti, Hossein [1 ]
Thomas, Daniel [2 ]
Amiri, Amirpiran [2 ]
机构
[1] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Kent St, Bentley, WA 6102, Australia
[2] Aston Univ, Sch Engn & Appl Sci, EBRI, Birmingham B4 7ET, W Midlands, England
关键词
CO2; capture; Gas hydrate; Nucleation; Shrinking core model; Induction time; MOLECULAR-DYNAMICS SIMULATIONS; REACTION-RATE CONSTANT; SHRINKING-CORE MODEL; CLATHRATE-HYDRATE; CARBON-DIOXIDE; INTRINSIC KINETICS; HIGH-PRESSURE; ICE POWDERS; GROWTH; METHANE;
D O I
10.1016/j.jclepro.2019.05.240
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gas hydrate technology is a promising approach for carbon capture. However, due to the multi-physics and multi-scale complexity of the process, this technology is not sufficiently understood for real-life scale applications. In particular, further fundamental studies of the hydrate formation mechanisms and rate are needed to achieve relevant insights into the process design and intensification. High-fidelity numerical models are crucial to capture and explain the dominant physicochemical mechanisms involved in the process. This paper presents a new variation of the shrinking core model (SCM) that can capture the practically observed features of the carbon dioxide (CO2) hydration process, including the nucleation phase behavior and induction time, which have not been exploited previously. Accordingly, the most significant contribution of the current work to the literature is the proposal and demonstration of an efficient and rapid predictive tool for the CO2 hydrate nucleation process. Moreover, a model-based estimation of the induction time, as a critical parameter in CO2 hydrate rate estimation and control, is presented. Additionally, the temperature history profile over the nucleation and growth phases is simulated and compared against experimental data from the literature. The proposed model offers an in-depth and rationale analysis tool compared to the primary forms of the SCM and other models in which the nucleation stage has been compromised for the sake of mathematical modeling and numerical solution simplicity. The proposed concept is generic enough to be used for CH4 hydration process too. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:805 / 816
页数:12
相关论文
共 50 条
  • [1] Quest for optimal nanoconfinement for hydrate-based CO2 capture
    Wang, Pengfei
    Kang, Hongwei
    Teng, Ying
    Li, Yun
    Wang, Xiaomeng
    Su, Qinqin
    Zhu, Jianbo
    Han, Songbai
    Zhao, Yusheng
    Zhu, Jinlong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [2] Recent advances in gas hydrate-based CO2 capture
    Dashti, Hossein
    Yew, Leonel Zhehao
    Lou, Xia
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 23 : 195 - 207
  • [3] CO2 capture by adsorption and hydrate-based separation: A technological review
    Thilagan J.
    Gayathri B.
    Sugumar M.
    International Journal of Environment and Waste Management, 2018, 22 (1-4): : 147 - 181
  • [4] Experimental and process simulation of hydrate-based CO2 capture from biogas
    Li, Qi
    Fan, Shuanshi
    Chen, Qiuxiong
    Yang, Guang
    Chen, Yunwen
    Li, Luling
    Li, Gang
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 72
  • [5] Effect of nanoparticles as a substitute for kinetic additives on the hydrate-based CO2 capture
    Cheng, Zucheng
    Xu, Huazheng
    Wang, Sijia
    Liu, Weiguo
    Li, Yanghui
    Jiang, Lanlan
    Chen, Cong
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2021, 424 (424)
  • [6] Gas Hydrate-Based CO2 Capture: A Journey from Batch to Continuous
    Rehman, Adeel Ur
    Lal, Bhajan
    ENERGIES, 2022, 15 (21)
  • [7] Thermodynamic analysis of hydrate-based pre-combustion capture of CO2
    Zhang, Junshe
    Yedlapalli, Prasad
    Lee, Jae W.
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (22) : 4732 - 4736
  • [8] Variations of the shrinking core model for effective kinetics modeling of the gas hydrate-based CO2 capture process
    Dashti, Hossein
    Thomas, Daniel
    Amiri, Amirpiran
    Lou, Xia
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1687 - 1692
  • [9] Hydrate-based technology for CO2 capture from fossil fuel power plants
    Yang, Mingjun
    Song, Yongchen
    Jiang, Lanlan
    Zhao, Yuechao
    Ruan, Xuke
    Zhang, Yi
    Wang, Shanrong
    APPLIED ENERGY, 2014, 116 : 26 - 40
  • [10] A literature research on the performance evaluation of hydrate-based CO2 capture and separation process
    He, Junnan
    Liu, Yinan
    Ma, Zhiwei
    Deng, Shuai
    Zhao, Ruikai
    Zhao, Li
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105