Statistical continuum mechanics analysis of an elastic two-isotropic-phase composite material

被引:28
作者
Lin, S
Garmestani, H [1 ]
机构
[1] Coll Engn, FAMU FSU, Tallahassee, FL 32310 USA
[2] Ctr Mat Res & Technol, Tallahassee, FL 32310 USA
关键词
effective elastic moduli;
D O I
10.1016/S1359-8368(99)00050-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A statistical mechanics theory is formulated to capture the effect of microstructure distribution on the effective elastic moduli of a composite material. Two point probability functions are used as a major component of the statistical theory. The statistical correlation functions represent the morphology and the distribution (random, periodic,...) of phases. The theory can benefit from simple mathematical representation of distribution or the shape of the second phase (circular, elliptical,...). A two-point probability function is used to approximate the correlation functions for a general class of geometries with isotropic and random distributions. The simulations are also provided and compared to other (periodic) distributions. The results show that the theory is capable of capturing the microstructural featuring in addition to the statistical distributions. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 43 条
[1]   A STATISTICAL FORMULATION OF VISCO-PLASTIC BEHAVIOR IN HETEROGENEOUS POLYCRYSTALS [J].
ADAMS, BL ;
CANOVA, GR ;
MOLINARI, A .
TEXTURES AND MICROSTRUCTURES, 1989, 11 (01) :57-71
[2]   A STATISTICAL-THEORY OF CREEP IN POLYCRYSTALLINE MATERIALS [J].
ADAMS, BL ;
FIELD, DP .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (10) :2405-2417
[3]   DESCRIPTION OF ORIENTATION COHERENCE IN POLYCRYSTALLINE MATERIALS [J].
ADAMS, BL ;
MORRIS, PR ;
WANG, TT ;
WILLDEN, KS ;
WRIGHT, SI .
ACTA METALLURGICA, 1987, 35 (12) :2935-2946
[4]  
ADAMS BL, 1988, ICOTOM8 SANT FE, P135
[5]  
[Anonymous], 1972, THEORY FIBER REINFOR
[6]   OPTIMAL BOUNDS AND MICROGEOMETRIES FOR ELASTIC 2-PHASE COMPOSITES [J].
AVELLANEDA, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) :1216-1228
[7]   USE OF CLASSICAL VARIATIONAL PRINCIPLES TO DETERMINE BOUNDS FOR EFFECTIVE BULK MODULUS IN HETEROGENEOUS MEDIA [J].
BERAN, M ;
MOLYNEUX, J .
QUARTERLY OF APPLIED MATHEMATICS, 1966, 24 (02) :107-&
[8]  
Beran M.J., 1968, STAT CONTINUUM THEOR
[9]   ON ELASTIC MODULI OF SOME HETEROGENEOUS MATERIALS [J].
BUDIANSK.B .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1965, 13 (04) :223-&
[10]  
CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315, DOI 10.1016/0022-5096(79)90032-2