共 50 条
Jackknife model averaging for expectile regressions in increasing dimension
被引:10
|作者:
Tu, Yundong
[1
,2
]
Wang, Siwei
[1
,2
]
机构:
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Expectile regression;
Heteroscedasticity;
Jackknife model averaging;
High dimensional data;
SELECTION;
RISK;
D O I:
10.1016/j.econlet.2020.109607
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
Expectile regression is a useful tool for modeling data with heterogeneous conditional distributions. This paper develops the jackknife model averaging method for expectile regressions. The asymptotic properties of expectile estimator under misspecification with increasing dimension of parameters have been studied. The model averaging expectile estimator using the leave-one-out cross-validated weight is shown to be asymptotically optimal in the sense of out-of-sample final prediction error. Numerical results demonstrate the nice performance of the averaging estimators. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文