Jackknife model averaging for expectile regressions in increasing dimension

被引:10
|
作者
Tu, Yundong [1 ,2 ]
Wang, Siwei [1 ,2 ]
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Expectile regression; Heteroscedasticity; Jackknife model averaging; High dimensional data; SELECTION; RISK;
D O I
10.1016/j.econlet.2020.109607
中图分类号
F [经济];
学科分类号
02 ;
摘要
Expectile regression is a useful tool for modeling data with heterogeneous conditional distributions. This paper develops the jackknife model averaging method for expectile regressions. The asymptotic properties of expectile estimator under misspecification with increasing dimension of parameters have been studied. The model averaging expectile estimator using the leave-one-out cross-validated weight is shown to be asymptotically optimal in the sense of out-of-sample final prediction error. Numerical results demonstrate the nice performance of the averaging estimators. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Expectile regression averaging method for probabilistic forecasting of electricity prices
    Janczura, Joanna
    COMPUTATIONAL STATISTICS, 2025, 40 (02) : 683 - 700
  • [22] Model averaging-based sufficient dimension reduction
    Cai, Min
    Zhuang, Ruige
    Yu, Zhou
    Wu, Ping
    STAT, 2022, 11 (01):
  • [23] Expectile regression forest: A new nonparametric expectile regression model
    Cai, Chao
    Dong, Haotian
    Wang, Xinyi
    EXPERT SYSTEMS, 2023, 40 (01)
  • [24] Multi-dimensional interactions in the oilfield market: A jackknife model averaging approach of spatial productivity analysis
    Gong, Binlei
    ENERGY ECONOMICS, 2020, 86
  • [25] DIMENSION REDUCTION FOR CONDITIONAL VARIANCE IN REGRESSIONS
    Zhu, Li-Ping
    Zhu, Li-Xing
    STATISTICA SINICA, 2009, 19 (02) : 869 - 883
  • [26] Sufficient Dimension Reduction for Censored Regressions
    Lu, Wenbin
    Li, Lexin
    BIOMETRICS, 2011, 67 (02) : 513 - 523
  • [27] Ranking Model Averaging: Ranking Based on Model Averaging
    Feng, Ziheng
    He, Baihua
    Xie, Tianfa
    Zhang, Xinyu
    Zong, Xianpeng
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [28] A continuous threshold expectile model
    Zhang, Feipeng
    Li, Qunhua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 116 : 49 - 66
  • [29] SURROGATE DIMENSION REDUCTION IN MEASUREMENT ERROR REGRESSIONS
    Zhang, Jun
    Zhu, Liping
    Zhu, Lixing
    STATISTICA SINICA, 2014, 24 (03) : 1341 - 1363
  • [30] Mincer-Zarnowitz quantile and expectile regressions for forecast evaluations under aysmmetric loss functions
    Guler, Kemal
    Ng, Pin T.
    Xiao, Zhijie
    JOURNAL OF FORECASTING, 2017, 36 (06) : 651 - 679