A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

被引:13
作者
Yokoi, Kensuke [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Chiba Univ, Dept Elect & Mech Engn, Chiba 2638522, Japan
基金
日本学术振兴会;
关键词
Level set method; Multi-phase flow; CUBIC-POLYNOMIAL INTERPOLATION; EFFICIENT IMPLEMENTATION; HYPERBOLIC-EQUATIONS; UNIVERSAL SOLVER; JUNCTIONS; WATER;
D O I
10.1016/j.cpc.2009.01.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79 (1988) 12: M. Sussman, R Smereka, S. Osher, A level set approach for capturing Solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface. Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active Contour models, International journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1145 / 1149
页数:5
相关论文
共 31 条
[1]   The fast construction of extension velocities in level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (01) :2-22
[2]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[3]   Coupling water and smoke to thin deformable and rigid shells [J].
Guendelman, E ;
Selle, A ;
Losasso, F ;
Fedkiw, R .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :973-981
[4]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[5]   Meniscus-climbing insects [J].
Hu, DL ;
Bush, JWM .
NATURE, 2005, 437 (7059) :733-736
[6]   The hydrodynamics of water strider locomotion [J].
Hu, DL ;
Chan, B ;
Bush, JWM .
NATURE, 2003, 424 (6949) :663-666
[7]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[8]   SNAKES - ACTIVE CONTOUR MODELS [J].
KASS, M ;
WITKIN, A ;
TERZOPOULOS, D .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (04) :321-331
[9]   APPLICATION OF A FRACTIONAL-STEP METHOD TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
KIM, J ;
MOIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :308-323
[10]  
Kimmel R., 2003, NUMERICAL GEOMETRY I