Continuous-variable Quantum Phase Estimation based on Machine Learning

被引:16
作者
Xiao, Tailong [1 ,2 ]
Huang, Jingzheng [1 ,2 ]
Fan, Jianping [3 ]
Zeng, Guihua [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Ctr Quantum Informat Sensing & Proc, Shanghai 200240, Peoples R China
[3] Univ N Carolina, Dept Comp Sci, Charlotte, NC 28223 USA
基金
中国国家自然科学基金;
关键词
STATES;
D O I
10.1038/s41598-019-48551-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Making use of the general physical model of the Mach-Zehnder interferometer with photon loss which is a fundamental physical issue, we investigate the continuous-variable quantum phase estimation based on machine learning approach, and an efficient recursive Bayesian estimation algorithm for Gaussian states phase estimation has been proposed. With the proposed algorithm, the performance of the phase estimation may be improved distinguishably. For example, the physical limits (i.e., the standard quantum limit and Heisenberg limit) for the phase estimation precision may be reached in more efficient ways especially in the situation of the prior information being employed, the range for the estimated phase parameter can be extended from [0, pi/2] to [0, 2 pi] compared with the conventional approach, and influences of the photon losses on the output parameter estimation precision may be suppressed dramatically in terms of saturating the lossy bound. In addition, the proposed algorithm can be extended to the time-variable or multi-parameter estimation framework.
引用
收藏
页数:13
相关论文
共 50 条
[1]   High-NOON States by Mixing Quantum and Classical Light [J].
Afek, Itai ;
Ambar, Oron ;
Silberberg, Yaron .
SCIENCE, 2010, 328 (5980) :879-881
[2]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[3]  
Berni AA, 2015, NAT PHOTONICS, V9, P577, DOI [10.1038/NPHOTON.2015.139, 10.1038/nphoton.2015.139]
[4]   Optimal states and almost optimal adaptive measurements for quantum interferometry [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5098-5101
[5]   Optimal input states and feedback for interferometric phase estimation [J].
Berry, DW ;
Wiseman, HM ;
Breslin, JK .
PHYSICAL REVIEW A, 2001, 63 (05) :11
[6]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[7]   Statistical geometry in quantum mechanics [J].
Brody, DC ;
Hughston, LP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1977) :2445-2475
[8]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[9]   Marginal likelihood from the Metropolis-Hastings output [J].
Chib, S ;
Jeliazkov, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :270-281
[10]   Quantum Cramer-Rao Bound and Parity Measurement [J].
Chiruvelli, Aravind ;
Lee, Hwang .
ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION III, 2010, 7611