Research status and issues of tungsten plasma facing materials for ITER and beyond

被引:276
|
作者
Ueda, Y. [1 ]
Coenen, J. W. [2 ]
De Temmerman, G. [3 ]
Doerner, R. P. [4 ]
Linke, J. [2 ]
Philipps, V. [2 ]
Tsitrone, E. [5 ]
机构
[1] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
[2] EURATOM, Forschungszentrum Julich, D-52425 Julich, Germany
[3] EURATOM, FOM Inst DIFFER, Trilateral Eureg Cluster, NL-3430 BE Nieuwegein, Netherlands
[4] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[5] CEA Cadarache, CEA DSM IRFM, St Paul Les Durance, France
关键词
Tungsten; Plasma facing materials; ITER; He bubbles; ELM-like heat pulse; LOW-ENERGY; HIGH-FLUX; DEUTERIUM RETENTION; BLISTER FORMATION; HIGH FLUENCES; STEADY-STATE; HEAT PULSES; SURFACE; HYDROGEN; IRRADIATION;
D O I
10.1016/j.fusengdes.2014.02.078
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This review summarizes surface morphology changes of tungsten caused by heat and particle loadings from edge plasmas, and their effects on enhanced erosion and material lifetime in ITER and beyond. Pulsed heat loadings by transients (disruption and ELM) are the largest concerns due to surface melting, cracking, and dust formation. Hydrogen induced blistering is unlikely to be an issue of ITER. Helium bombardment would cause surface morphology changes such as W fuzz, He holes, and nanometric bubble layers, which could lead to enhanced erosion (e.g. unipolar arcing of W fuzz). Particle loadings could enhance pulsed heat effects (cracking and erosion) due to surface layer embrittlement by nanometric bubbles and solute atoms. But pulsed heat loadings alleviate surfaces morphology changes in some cases (He holes by ELM-like heat pulses). Effects of extremely high fluence (similar to 10(30) m(-2)), mixed materials, and neutron irradiation are important issues to be pursued for ITER and beyond. In addition, surface refurbishment to prolong material lifetime is also an important issue. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:901 / 906
页数:6
相关论文
共 50 条
  • [1] Investigation of tungsten alloys as plasma facing materials for the ITER divertor
    Roedig, M
    Kuehnlein, W
    Linke, J
    Merola, M
    Rigal, E
    Schedler, B
    Visca, E
    FUSION ENGINEERING AND DESIGN, 2002, 61-62 : 135 - 140
  • [2] Research status of tungsten-based plasma-facing materials: A review
    Luo, Chunyang
    Xu, Liujie
    Zong, Le
    Shen, Huahai
    Wei, Shizhong
    FUSION ENGINEERING AND DESIGN, 2023, 190
  • [3] Plasma facing and high heat flux materials - needs for ITER and beyond
    Bolt, H
    Barabash, V
    Federici, G
    Linke, J
    Loarte, A
    Roth, J
    Sato, K
    JOURNAL OF NUCLEAR MATERIALS, 2002, 307 : 43 - 52
  • [4] Treatment of ITER plasma facing components: Current status and remaining open issues before ITER implementation
    Grisolia, C.
    Counsell, G.
    Dinescu, G.
    Semerok, A.
    Bekris, N.
    Coad, P.
    Hopf, C.
    Roth, J.
    Rubel, M.
    Widdowson, A.
    Tsitrone, E.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) : 2390 - 2398
  • [5] Assessment of tungsten for use in the ITER plasma facing components
    Davis, JW
    Barabash, VR
    Makhankov, A
    Plochl, L
    Slattery, KT
    JOURNAL OF NUCLEAR MATERIALS, 1998, 258 : 308 - 312
  • [6] Use of tungsten coating on iter plasma facing components
    Davis, JW
    Slattery, KT
    Driemeyer, DE
    Ulrickson, MA
    JOURNAL OF NUCLEAR MATERIALS, 1996, 233 : 604 - 608
  • [7] Design requirements for plasma facing materials in ITER
    Matera, R.
    Federici, G.
    Journal of Nuclear Materials, 1996, 233-237 (Pt A): : 17 - 25
  • [8] Design requirements for plasma facing materials in ITER
    Matera, R
    Federici, B
    JOURNAL OF NUCLEAR MATERIALS, 1996, 233 : 17 - 25
  • [9] Armour materials for the ITER plasma facing components
    Barabash, V
    Federici, G
    Matera, R
    Raffray, AR
    PHYSICA SCRIPTA, 1999, T81 : 74 - 83
  • [10] RECENT ADVANCES ON HYDROGEN RETENTION IN ITER'S PLASMA-FACING MATERIALS: BERYLLIUM, CARBON, AND TUNGSTEN
    Skinner, C. H.
    Haasz, A. A.
    Alimow, V. Kh.
    Bekris, N.
    Causey, R. A.
    Clark, R. E. H.
    Coad, J. P.
    Davis, J. W.
    Doerner, R. P.
    Mayer, M.
    Pisarev, A.
    Roth, J.
    Tanabe, T.
    FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (04) : 891 - 945