Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

被引:0
作者
Hao, Siyuan [1 ]
Xia, Yufeng [1 ]
Zhou, Lijian [1 ]
Ye, Yuanxin [2 ]
Wang, Wei [3 ]
机构
[1] Qingdao Univ Technol, Coll Informat & Control Engn, Qingdao 266520, Peoples R China
[2] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Peoples R China
[3] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); deep learning; fusion; hyperspectral image classification (HIC); remote sensing; Transformer; NETWORK;
D O I
10.1109/LGRS.2022.3223090
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Compared with traditional images, hyperspectral images (HSIs) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on convolutional neural network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore, Transformer, which is good at processing sequences, has also been gradually applied to HIC. Besides, since HSI is typical 3-D structures, we believe that the correlation of the three dimensions is also an important information. So, in order to fully extract the spectral-spatial information, as well as the correlation of the three dimensions, we propose a spectral and spatial feature fusion module (i.e., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. We believe that these feature maps still have deep spectral information. Therefore, we have embedded them into 1-D vectors and use Transformer's encoder to extract features. However, some information will be lost when embedding into 1-D vectors. Therefore, we use decoder, which has been ignored in the field of vision, to fuse the features before passing encoder and the features after extracted by encoders. Two kinds of features are fused by decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    REMOTE SENSING, 2020, 12 (09)
  • [2] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [3] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    REMOTE SENSING, 2024, 16 (03)
  • [4] Fusion of Spectral-Spatial Classifiers for Hyperspectral Image Classification
    Zhong, Shengwei
    Chen, Shuhan
    Chang, Chein-, I
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5008 - 5027
  • [5] Multi-layer feature fusion for hyperspectral image classification
    Hao, Siyuan
    Li, Rui
    Zhang, Min
    Ye, Yuanxin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (20) : 6442 - 6467
  • [6] Spectral Feature Fusion Networks With Dual Attention for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Spectral-Spatial Discriminant Feature Learning for Hyperspectral Image Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    REMOTE SENSING, 2019, 11 (13)
  • [8] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [9] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [10] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61