A new smoothness indicator for improving the weighted essentially non-oscillatory scheme

被引:104
作者
Fan, Ping [1 ]
Shen, Yiqing [2 ]
Tian, Baolin [3 ]
Yang, Chao [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
WENO scheme; Smoothness indicator; Hyperbolic conservation law; Euler equation; HIGH-ORDER; EFFICIENT IMPLEMENTATION; WENO SCHEMES; RAYLEIGH-TAYLOR; MESHES; FLOW;
D O I
10.1016/j.jcp.2014.03.032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a new smoothness indicator that measures the local smoothness of a function in a stencil is introduced. The new local smoothness indicator is defined based on the Lagrangian interpolation polynomial and has a more succinct form compared with the classical one proposed by Jiang and Shu [12]. Furthermore, several global smoothness indicators with truncation errors of up to 8th-order are devised. With the new local and global smoothness indicators, the corresponding weighted essentially non-oscillatory (WENO) scheme can present the fifth order convergence in smooth regions, especially at critical points where the first and second derivatives vanish (but the third derivatives are not zero). Also the use of higher order global smoothness indicators incurs less dissipation near the discontinuities of the solution. Numerical experiments are conducted to demonstrate the performance of the proposed scheme. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 354
页数:26
相关论文
共 28 条
[1]   Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods [J].
Balsara, Dinshaw S. ;
Meyer, Chad ;
Dumbser, Michael ;
Du, Huijing ;
Xu, Zhiliang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :934-969
[2]   Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics [J].
Balsara, Dinshaw S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) :5040-5056
[3]   Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics [J].
Balsara, Dinshaw S. ;
Rumpf, Tobias ;
Dumbser, Michael ;
Munz, Claus-Dieter .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) :2480-2516
[4]   Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J].
Balsara, DS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :405-452
[5]   An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J].
Borges, Rafael ;
Carmona, Monique ;
Costa, Bruno ;
Don, Wai Sun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (06) :3191-3211
[6]   High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws [J].
Castro, Marcos ;
Costa, Bruno ;
Don, Wai Sun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (05) :1766-1792
[7]   Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems [J].
Dumbser, Michael ;
Kaeser, Martin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (02) :693-723
[8]   Very-high-order WENO schemes [J].
Gerolymos, G. A. ;
Senechal, D. ;
Vallet, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8481-8524
[9]   An improved weighted essentially non-oscillatory scheme with a new smoothness indicator [J].
Ha, Youngsoo ;
Kim, Chang Ho ;
Lee, Yeon Ju ;
Yoon, Jungho .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :68-86
[10]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]