Coincidence point theorems on metric spaces via simulation functions

被引:164
作者
Roldan-Lopez-de-Hierro, Antonio-Francisco [1 ]
Karapinar, Erdal [2 ,3 ]
Roldan-Lopez-de-Hierro, Concepcion [4 ]
Martinez-Moreno, Juan [1 ]
机构
[1] Univ Jaen, Dept Math, Jaen 23071, Spain
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
[3] King Abdulaziz Univ, Nonlinear Anal & Appl Math Res Grp NAAM, Jeddah 21413, Saudi Arabia
[4] Univ Granada, Dept Stat & Operat Res, Granada, Spain
关键词
Metric space; Coincidence point; Fixed point; Simulation function; Contractivity condition; MAPPINGS;
D O I
10.1016/j.cam.2014.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Due to its possible applications, Fixed Point Theory has become one of the most useful branches of Nonlinear Analysis. In a very recent paper, Khojasteh et al. introduced the notion of simulation function in order to express different contractivity conditions in a unified way, and they obtained some fixed point results. In this paper, we slightly modify their notion of simulation function and we investigate the existence and uniqueness of coincidence points of two nonlinear operators using this kind of control functions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 14 条
[1]  
Agarwal R., 2014, J NONLINEAR IN PRESS
[2]  
Agarwal R. P., 2013, FIXED POINT THEORY A, V2013
[3]   Discussion on "Multidimensional Coincidence Points" via Recent Publications [J].
Al-Mezel, Saleh A. ;
Alsulami, Hamed H. ;
Karapinar, Erdal ;
Lopez-de-Hierro, Antonio-Francisco Roldan .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[4]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[5]  
Cho Y.J., 2014, J COMPUT AP IN PRESS
[7]   Discussion of coupled and tripled coincidence point theorems for φ-contractive mappings without the mixed g-monotone property [J].
Karapinar, Erdal ;
Roldan, Antonio ;
Shahzad, Naseer ;
Sintunavarat, Wutiphol .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[8]   FIXED-POINT THEOREMS BY ALTERING DISTANCES BETWEEN THE POINTS [J].
KHAN, MS ;
SWALEH, M ;
SESSA, S .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (01) :1-9
[9]  
Khojasteh F., 2014, FILOMAT IN PRESS
[10]   Some new common fixed point results for generalized contractive multi-valued non-self-mappings [J].
Khojasteh, Farshid ;
Rakocevic, Vladimir .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :287-293