Langevin simulations of the half-filled cubic Holstein model

被引:18
作者
Cohen-Stead, B. [1 ]
Barros, Kipton [2 ]
Meng, Z. Y. [3 ,4 ,5 ,6 ,7 ]
Chen, Chuang [3 ,4 ]
Scalettar, R. T. [1 ]
Batrouni, G. G. [8 ,9 ,10 ,11 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Los Alamos Natl Lab, Theoret Div, Phys & Chem Mat, Los Alamos, NM 87545 USA
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[5] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Peoples R China
[6] Univ Hong Kong, HKU UCAS Joint Inst Theoret & Computat Phys, Pokfulam Rd, Hong Kong, Peoples R China
[7] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[8] Univ Cote dAzur, CNRS, INPHYNI, F-0600 Nice, France
[9] Natl Univ Singapore, Ctr Quantum Technol, 2 Sci Dr 3, Singapore 117542, Singapore
[10] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
[11] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
关键词
CHARGE-DENSITY-WAVE; MEAN-FIELD THEORY; HUBBARD-MODEL; NUMERICAL-SIMULATION; SUPERCONDUCTIVITY; COMPETITION;
D O I
10.1103/PhysRevB.102.161108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the past several years, reliable quantum Monte Carlo results for the charge density wave transition temperature T-cdw of the half-filled two-dimensional Holstein model in square and honeycomb lattices have become available for the first time. Exploiting the further development of numerical methodology, here we present results in three dimensions, which are made possible through the use of Langevin evolution of the quantum phonon degrees of freedom. In addition to determining T-cdw from the scaling of the charge correlations, we also examine the nature of charge order at general wave vectors for different temperatures, couplings, and phonon frequencies, and the behavior of the spectral function and specific heat.
引用
收藏
页数:5
相关论文
共 55 条
[1]  
[Anonymous], UNPUB
[2]  
Aubry S., 1989, TECHNICAL REPORT
[3]   Langevin simulations of a long-range electron-phonon model [J].
Batrouni, G. G. ;
Scalettar, Richard T. .
PHYSICAL REVIEW B, 2019, 99 (03)
[4]   Quantum Monte Carlo with the Langevin Equation: Coupled Bose-Fermi Systems [J].
Batrouni, G. George ;
Scalettar, Richard T. .
XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
[5]  
BATROUNI GG, 1987, NUCL PHYS A, V461, pC351, DOI 10.1016/0375-9474(87)90495-7
[6]   LANGEVIN SIMULATIONS OF LATTICE FIELD-THEORIES [J].
BATROUNI, GG ;
KATZ, GR ;
KRONFELD, AS ;
LEPAGE, GP ;
SVETITSKY, B ;
WILSON, KG .
PHYSICAL REVIEW D, 1985, 32 (10) :2736-2747
[7]   Revisiting the hybrid quantum Monte Carlo method for Hubbard and electron-phonon models [J].
Beyl, Stefan ;
Goth, Florian ;
Assaad, Fakher F. .
PHYSICAL REVIEW B, 2018, 97 (08)
[8]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[9]   Cellular-dynamical mean-field theory of the competition between antiferromagnetism and d-wave superconductivity in the two-dimensional Hubbard model [J].
Capone, M. ;
Kotliar, G. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :529-531
[10]   Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons [J].
Chen, Chuang ;
Xu, Xiao Yan ;
Meng, Zi Yang ;
Hohenadler, Martin .
PHYSICAL REVIEW LETTERS, 2019, 122 (07)