A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE

被引:21
作者
Yuan, Lei [1 ]
Yang, Danping [2 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
State-constrained optimal control problem; Adaptive finite element method; A posteriori error estimate; FINITE-ELEMENT APPROXIMATION; EQUATIONS;
D O I
10.4208/jcm.2009.27.4.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.
引用
收藏
页码:525 / 542
页数:18
相关论文
共 24 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]  
Barbu V., 1978, CONVEXITY OPTIMIZATI
[3]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[4]   On the structure of Lagrange multipliers for state-constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SYSTEMS & CONTROL LETTERS, 2003, 48 (3-4) :169-176
[5]   General optimality conditions for constrained convex control problems [J].
Bergounioux, M ;
Tiba, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (02) :698-711
[6]  
BONNAS JF, 2000, PERTURBATION ANAL OP
[8]  
Casas E., 2003, ESAIM P, V13, P18
[9]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[10]   Convergence of a finite element approximation to a state-constrained elliptic control problem [J].
Deckelnick, Klaus ;
Hinze, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :1937-1953