Comparison of two schemes for Laplace-domain 2D scalar wave equation

被引:1
作者
Chen, Jing-Bo [1 ]
Cao, Shu-Hong [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Seismic modeling; Laplace domain; Average-derivative method; Finite-element method; DERIVATIVE OPTIMAL SCHEME; FINITE-DIFFERENCE; FORM INVERSION; FOURIER DOMAIN;
D O I
10.1016/j.jappgeo.2014.04.009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Laplace-domain modeling plays an important role in Laplace-domain full waveform inversion. In order to provide efficient numerical schemes for Laplace-domain modeling, two 9-point schemes for Laplace-domain 2D scalar equation are compared in this paper. Compared to the finite-element 9-point scheme, the average-derivative optimal 9-point scheme reduces the number of grid points per pseudo-wavelength from 16 to 4 for equal directional sampling intervals. For unequal directional sampling intervals, the average-derivative optimal 9-point scheme reduces the number of grid points per pseudo-wavelength from 13 to 4. Numerical experiments demonstrate that the average-derivative optimal 9-point scheme is more accurate than the finite-element 9-point scheme for the same sampling intervals. By using smaller sampling intervals, the finite-element 9-point scheme can approach the accuracy of the average-derivative optimal 9-point scheme, but the corresponding computational cost and storage requirement are much higher. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 198
页数:5
相关论文
共 50 条
  • [31] A structure-preserving Partitioned Finite Element Method for the 2D wave equation
    Cardoso-Ribeiro, Flavio Luiz
    Matignon, Denis
    Lefevre, Laurent
    IFAC PAPERSONLINE, 2018, 51 (03): : 119 - 124
  • [32] Forward modeling method of two-variable parameter scalar wave equation
    Wu GuoChen
    Liu Jie
    Li QingYang
    Yang LingYun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (04): : 1607 - 1621
  • [33] An adaptable 17-point scheme for high-accuracy frequency-domain acoustic wave modeling in 2D constant density media
    Tang, Xiangde
    Liu, Hong
    Zhang, Heng
    Liu, Lu
    Wang, Zhiyang
    GEOPHYSICS, 2015, 80 (06) : T211 - T221
  • [34] Adaptive mesh based on second generation wavelet simulation wave propagation for 2D acoustic wave equation
    Mi Tie-Liang
    Sun Bing-Bing
    Yang Hui-Zhu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (11): : 2862 - 2869
  • [35] A time-domain SGFD-FK hybrid method for 2D teleseismic elastic wave modeling and inversion
    del Valle-Rosales, Mauricio
    Chavez-Garcia, Francisco Jose
    ACTA GEOPHYSICA, 2024, 72 (06) : 3903 - 3915
  • [36] Two-dimensional Laplace-domain waveform inversion using adaptive meshes: an experience of the 2004 BP velocity-analysis benchmark data set
    Cha, Young Ho
    Shin, Changsoo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 182 (02) : 865 - 879
  • [37] Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain
    Um, E.S. (evanum@gmail.com), 1600, Society of Exploration Geophysicists (77): : T29 - T36
  • [38] Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain
    Um, Evan Schankee
    Commer, Michael
    Newman, Gregory A.
    GEOPHYSICS, 2012, 77 (02) : T29 - T36
  • [39] A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation
    Shah, Farman Ali
    Kamran
    Khan, Zareen A.
    Azmi, Fatima
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2024, 9 (10): : 27122 - 27149
  • [40] Computationally Efficient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
    Artichowicz, Wojciech
    Gasiorowski, Dariusz
    WATER, 2019, 11 (10)