Comparison of two schemes for Laplace-domain 2D scalar wave equation

被引:1
|
作者
Chen, Jing-Bo [1 ]
Cao, Shu-Hong [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Seismic modeling; Laplace domain; Average-derivative method; Finite-element method; DERIVATIVE OPTIMAL SCHEME; FINITE-DIFFERENCE; FORM INVERSION; FOURIER DOMAIN;
D O I
10.1016/j.jappgeo.2014.04.009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Laplace-domain modeling plays an important role in Laplace-domain full waveform inversion. In order to provide efficient numerical schemes for Laplace-domain modeling, two 9-point schemes for Laplace-domain 2D scalar equation are compared in this paper. Compared to the finite-element 9-point scheme, the average-derivative optimal 9-point scheme reduces the number of grid points per pseudo-wavelength from 16 to 4 for equal directional sampling intervals. For unequal directional sampling intervals, the average-derivative optimal 9-point scheme reduces the number of grid points per pseudo-wavelength from 13 to 4. Numerical experiments demonstrate that the average-derivative optimal 9-point scheme is more accurate than the finite-element 9-point scheme for the same sampling intervals. By using smaller sampling intervals, the finite-element 9-point scheme can approach the accuracy of the average-derivative optimal 9-point scheme, but the corresponding computational cost and storage requirement are much higher. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 198
页数:5
相关论文
共 50 条
  • [1] Dispersion analysis of an average-derivative optimal scheme for Laplace-domain scalar wave equation
    Chen, Jing-Bo
    GEOPHYSICS, 2014, 79 (02) : T37 - T42
  • [2] A new method for numerical dispersion analysis of Laplace-domain 2-D elastic wave equation
    Chen, Jing-Bo
    EXPLORATION GEOPHYSICS, 2020, 51 (04) : 456 - 468
  • [3] 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function
    Park, Eunjin
    Ha, Wansoo
    Chung, Wookeen
    Shin, Changsoo
    Min, Dong-Joo
    PURE AND APPLIED GEOPHYSICS, 2013, 170 (12) : 2075 - 2085
  • [4] 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function
    Eunjin Park
    Wansoo Ha
    Wookeen Chung
    Changsoo Shin
    Dong-Joo Min
    Pure and Applied Geophysics, 2013, 170 : 2075 - 2085
  • [5] Laplace-domain wave-equation modeling and full waveform inversion in 3D isotropic elastic media
    Son, Woohyun
    Pyun, Sukjoon
    Shin, Changsoo
    Kim, Han-Joon
    JOURNAL OF APPLIED GEOPHYSICS, 2014, 105 : 120 - 132
  • [6] Convoluted fundamental solution for 2D scalar wave equation
    Gong, L.
    Mansur, W.J.
    Carrer, J.A.M.
    Boundary elements communications, 1997, 8 (02): : 93 - 96
  • [7] 2-D acoustic Laplace-domain waveform inversion of marine field data
    Ha, Wansoo
    Chung, Wookeen
    Park, Eunjin
    Shin, Changsoo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (01) : 421 - 428
  • [8] 2D Laplace-Fourier domain acoustic wave equation modeling with an optimal finite-difference method
    Wang, Jing-Yu
    Fan, Na
    Chen, Xue-Fei
    Zhong, Shou-Rui
    Li, Bo-Yu
    Li, Dan
    Zhao, Gang
    APPLIED GEOPHYSICS, 2023, 22 (1) : 119 - 131
  • [9] Time-space domain dispersion reduction schemes in the uniform norm for the 2D acoustic wave equation
    An, Yajun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 445
  • [10] An NAD Scheme with Wavenumber Error Optimized for 2D Scalar Wave Equation
    Yang, Guangwen
    Chen, Yushu
    Song, Guojie
    Yang, Yan
    Luo, Caiming
    Jin, Jianhua
    Li, Shiqin
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2016, 106 (01) : 189 - 203