Comparison of two schemes for Laplace-domain 2D scalar wave equation

被引:1
|
作者
Chen, Jing-Bo [1 ]
Cao, Shu-Hong [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Seismic modeling; Laplace domain; Average-derivative method; Finite-element method; DERIVATIVE OPTIMAL SCHEME; FINITE-DIFFERENCE; FORM INVERSION; FOURIER DOMAIN;
D O I
10.1016/j.jappgeo.2014.04.009
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Laplace-domain modeling plays an important role in Laplace-domain full waveform inversion. In order to provide efficient numerical schemes for Laplace-domain modeling, two 9-point schemes for Laplace-domain 2D scalar equation are compared in this paper. Compared to the finite-element 9-point scheme, the average-derivative optimal 9-point scheme reduces the number of grid points per pseudo-wavelength from 16 to 4 for equal directional sampling intervals. For unequal directional sampling intervals, the average-derivative optimal 9-point scheme reduces the number of grid points per pseudo-wavelength from 13 to 4. Numerical experiments demonstrate that the average-derivative optimal 9-point scheme is more accurate than the finite-element 9-point scheme for the same sampling intervals. By using smaller sampling intervals, the finite-element 9-point scheme can approach the accuracy of the average-derivative optimal 9-point scheme, but the corresponding computational cost and storage requirement are much higher. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 198
页数:5
相关论文
共 50 条
  • [1] Dispersion analysis of an average-derivative optimal scheme for Laplace-domain scalar wave equation
    Chen, Jing-Bo
    GEOPHYSICS, 2014, 79 (02) : T37 - T42
  • [2] A new method for numerical dispersion analysis of Laplace-domain 2-D elastic wave equation
    Chen, Jing-Bo
    EXPLORATION GEOPHYSICS, 2020, 51 (04) : 456 - 468
  • [3] Laplace-domain wave-equation modeling and full waveform inversion in 3D isotropic elastic media
    Son, Woohyun
    Pyun, Sukjoon
    Shin, Changsoo
    Kim, Han-Joon
    JOURNAL OF APPLIED GEOPHYSICS, 2014, 105 : 120 - 132
  • [4] 2D Laplace-Fourier domain acoustic wave equation modeling with an optimal finite-difference method
    Wang, Jing-Yu
    Fan, Na
    Chen, Xue-Fei
    Zhong, Shou-Rui
    Li, Bo-Yu
    Li, Dan
    Zhao, Gang
    APPLIED GEOPHYSICS, 2023, 22 (1) : 119 - 131
  • [5] Numerical dispersion analysis for three-dimensional Laplace-Fourier-domain scalar wave equation
    Chen, Jing-Bo
    EXPLORATION GEOPHYSICS, 2016, 47 (02) : 158 - 167
  • [6] Time-space domain dispersion reduction schemes in the uniform norm for the 2D acoustic wave equation
    An, Yajun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 445
  • [7] A general optimal method for a 2D frequency-domain finite-difference solution of scalar wave equation
    Fan, Na
    Zhao, Lian-Feng
    Xie, Xiao-Bi
    Tang, Xin-Gong
    Yao, Zhen-Xing
    GEOPHYSICS, 2017, 82 (03) : T121 - T132
  • [8] Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation
    Chen, Jing-Bo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 197 (03) : 1681 - 1692
  • [9] Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
    Shin, Jungkyun
    Shin, Changsoo
    Calandra, Henri
    JOURNAL OF APPLIED GEOPHYSICS, 2016, 129 : 41 - 52
  • [10] 2D acoustic-elastic coupled waveform inversion in the Laplace domain
    Bae, Ho Seuk
    Shin, Changsoo
    Cha, Young Ho
    Choi, Yunseok
    Min, Dong-Joo
    GEOPHYSICAL PROSPECTING, 2010, 58 (06) : 997 - 1010