Weak localization and weak antilocalization in doped Ge1-ySny layers with up to 8% Sn

被引:14
作者
Weisshaupt, David [1 ]
Funk, Hannes S. [1 ]
Kern, Michal [2 ]
Dettling, Marco M. [1 ]
Schwarz, Daniel [1 ]
Oehme, Michael [1 ]
Suergers, Christoph [3 ]
van Slageren, Joris [2 ]
Fischer, Inga A. [4 ]
Schulze, Joerg [1 ]
机构
[1] Univ Stuttgart, Inst Semicond Engn IHT, Stuttgart, Germany
[2] Univ Stuttgart, Inst Phys Chem IPC, Stuttgart, Germany
[3] Karlsruhe Inst Technol, Phys Inst PHI, Karlsruhe, Germany
[4] Brandenburg Univ Technol BTU, Expt Phys & Funct Mat, Cottbus, Germany
关键词
GeSn; low-temperature; weak localization; MBE; magnetoresistance; MAGNETORESISTANCE; MOBILITY; METAL;
D O I
10.1088/1361-648X/abcb68
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Low-temperature magnetoresistance measurements of n- and p-doped germanium-tin (Ge1-ySny) layers with Sn concentrations up to 8% show contributions arising from effects of weak localization for n-type and weak antilocalization for p-type doped samples independent of the Sn concentration. Calculations of the magnetoresistance using the Hikami-Larkin-Nagaoka model for two-dimensional transport allow us to extract the phase-coherence length for all samples as well as the spin-orbit length for the p-type doped samples. For pure Ge, we find phase-coherence lengths as long as (349.0 +/- 1.4) nm and (614.0 +/- 0.9) nm for n-type and p-type doped samples, respectively. The phase-coherence length decreases with increasing Sn concentration. From the spin-orbit scattering length, we determine the spin-diffusion scattering length in the range of 20-30 nm for all highly degenerate p-type doped samples irrespective of Sn concentration. These results show that Ge1-ySny is a promising material for future spintronic applications.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy [J].
Bhargava, Nupur ;
Coppinger, Matthew ;
Gupta, Jay Prakash ;
Wielunski, Leszek ;
Kolodzey, James .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[2]   MAGNETORESISTANCE IN SI METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS - EVIDENCE OF WEAK LOCALIZATION AND CORRELATION [J].
BISHOP, DJ ;
DYNES, RC ;
TSUI, DC .
PHYSICAL REVIEW B, 1982, 26 (02) :773-779
[3]   Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires [J].
Dames, C ;
Chen, G .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) :682-693
[4]   ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR [J].
DATTA, S ;
DAS, B .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :665-667
[5]   Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon [J].
De Cesari, S. ;
Balocchi, A. ;
Vitiello, E. ;
Jahandar, P. ;
Grilli, E. ;
Amand, T. ;
Marie, X. ;
Myronov, M. ;
Pezzoli, F. .
PHYSICAL REVIEW B, 2019, 99 (03)
[6]   Hanle-effect measurements of spin injection from Mn5Ge3C0.8/Al2O3-contacts into degenerately doped Ge channels on Si [J].
Fischer, Inga Anita ;
Chang, Li-Te ;
Suergers, Christoph ;
Rolseth, Erlend ;
Reiter, Sebastian ;
Stefanov, Stefan ;
Chiussi, Stefano ;
Tang, Jianshi ;
Wang, Kang L. ;
Schulze, Joerg .
APPLIED PHYSICS LETTERS, 2014, 105 (22)
[7]   Weak antilocalization of high mobility holes in a strained Germanium quantum well heterostructure [J].
Foronda, J. ;
Morrison, C. ;
Halpin, J. E. ;
Rhead, S. D. ;
Myronov, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (02)
[8]   Interband transitions in SnxGe1-x alloys [J].
He, G ;
Atwater, HA .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1937-1940
[9]  
HIKAMI S, 1980, PROG THEOR PHYS, V63, P707, DOI 10.1143/PTP.63.707
[10]   Spin-splitting in p-type Ge devices [J].
Holmes, S. N. ;
Newton, P. J. ;
Llandro, J. ;
Mansell, R. ;
Barnes, C. H. W. ;
Morrison, C. ;
Myronov, M. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (08)