Fine-Grained Crowdsourcing for Fine-Grained Recognition

被引:155
|
作者
Jia Deng [1 ]
Krause, Jonathan [1 ]
Li Fei-Fei [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
来源
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2013年
关键词
D O I
10.1109/CVPR.2013.81
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" algorithm that uses the human selected bubbles to improve machine recognition performance. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.
引用
收藏
页码:580 / 587
页数:8
相关论文
共 50 条
  • [1] Towards Fine-Grained Recognition: Joint Learning for Object Detection and Fine-Grained Classification
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT II, 2019, 11845 : 332 - 344
  • [2] FINE-GRAINED COLOUR DISCRIMINATION WITHOUT FINE-GRAINED COLOUR
    Gert, Joshua
    AUSTRALASIAN JOURNAL OF PHILOSOPHY, 2015, 93 (03) : 602 - 605
  • [3] FINE-GRAINED AND LAYERED OBJECT RECOGNITION
    Wu, Yang
    Zheng, Nanning
    Liu, Yuanliu
    Yuan, Zejian
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (02)
  • [4] SELECTIVE PARTS FOR FINE-GRAINED RECOGNITION
    Li, Dong
    Li, Yali
    Wang, Shengjin
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 922 - 926
  • [5] Deep LSAC for Fine-Grained Recognition
    Lin, Di
    Wang, Yi
    Liang, Lingyu
    Li, Ping
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) : 200 - 214
  • [6] FgER: Fine-Grained Entity Recognition
    Abhishek
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8008 - 8009
  • [7] A dataset for fine-grained seed recognition
    Yuan, Min
    Lv, Ningning
    Dong, Yongkang
    Hu, Xiaowen
    Lu, Fuxiang
    Zhan, Kun
    Shen, Jiacheng
    Wu, Xiaolin
    Zhu, Liye
    Xie, Yufei
    SCIENTIFIC DATA, 2024, 11 (01)
  • [8] Improve Fine-Grained Feature Learning in Fine-Grained DataSet GAI
    Wang, Hai Peng
    Geng, Zhi Qing
    IEEE ACCESS, 2025, 13 : 12777 - 12788
  • [9] Leveraging Fine-Grained Labels to Regularize Fine-Grained Visual Classification
    Wu, Junfeng
    Yao, Li
    Liu, Bin
    Ding, Zheyuan
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION (ICCMS 2019) AND 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND APPLICATIONS (ICICA 2019), 2019, : 133 - 136
  • [10] FINE-GRAINED MONOLITH
    Louw, Michael
    ARCHITECTURE SOUTH AFRICA, 2019, (96): : 48 - 49