STMG: Spatial-Temporal Mobility Graph for Location Prediction

被引:4
|
作者
Pan, Xuan [1 ,3 ]
Cai, Xiangrui [2 ,3 ]
Zhang, Jiangwei [4 ]
Wen, Yanlong [1 ,3 ]
Zhang, Ying [3 ]
Yuan, Xiaojie [2 ,3 ]
机构
[1] Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
[2] Nankai Univ, Coll Cyber Sci, Tianjin, Peoples R China
[3] Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, Tianjin, Peoples R China
[4] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I | 2021年 / 12681卷
基金
中国国家自然科学基金;
关键词
Location-Based Social Network; User mobility; Graph Neural Network; Location prediction; POINT;
D O I
10.1007/978-3-030-73194-6_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Location-Based Social Networks (LBSNs) data reflects a large amount of user mobility patterns. So it is possible to infer users' unvisited Points of Interest (POIs) through the users' check-in records in LBSNs. Existing location prediction approaches typically regard user check-ins as sequences, while they ignore the spatial and temporal correlations between non-adjacent records. Moreover, the serialized form is insufficient to analog user complex POI moving behaviors. In this paper, we model user check-in records as a graph, named Spatial-Temporal Mobility Graph (STMG), where the nodes and edges fuse the spatial-temporal information in absolute and relative aspect respectively. Based on STMG, we propose a location prediction model named Spatial-temporal Enhanced Graph Neural Network (SEGN). In SEGN, the STMG nodes are encoded as the embeddings with specific time and location semantics. Last but not the least, we introduce three kinds of matrices, which completely depict the user moving behaviors among POIs, as well as the relative relationships of time and location on STMG edges. Extensive experiments on three real-world LBSNs datasets demonstrate that with specific time information, SEGN outperforms seven state-of-the-art approaches on four metrics.
引用
收藏
页码:667 / 675
页数:9
相关论文
共 50 条
  • [11] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [12] Based Matrix Fusion Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
    Jing, Xin
    Zhu, Hai
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1171 - 1175
  • [13] QS-STT: QuadSection clustering and spatial-temporal trajectory model for location prediction
    Po-Ruey Lei
    Shou-Chung Li
    Wen-Chih Peng
    Distributed and Parallel Databases, 2013, 31 : 231 - 258
  • [14] QS-STT: QuadSection clustering and spatial-temporal trajectory model for location prediction
    Lei, Po-Ruey
    Li, Shou-Chung
    Peng, Wen-Chih
    DISTRIBUTED AND PARALLEL DATABASES, 2013, 31 (02) : 231 - 258
  • [15] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [16] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19) : 16655 - 16668
  • [17] Spatial-temporal synchronous graphsage for traffic prediction
    Yu, Xian
    Bao, Yinxin
    Shi, Quan
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [18] Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network
    Chen, Xiangyu
    Chuai, Gang
    Zhang, Kaisa
    Gao, Weidong
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [19] Semi-dynamic spatial-temporal graph neural network for traffic state prediction in waterways
    Li, Le
    Pan, Mingyang
    Liu, Zongying
    Sun, Hui
    Zhang, Ruolan
    OCEAN ENGINEERING, 2024, 293
  • [20] Airport surface movement prediction and safety assessment with spatial-temporal graph convolutional neural network
    Zhang, Xiaoge
    Zhong, Sanqiang
    Mahadevanb, Sankaran
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 144