Data-Driven MPC for Nonlinear Systems with Reinforcement Learning

被引:0
|
作者
Li, Yiran [1 ]
Wang, Qian [1 ]
Sun, Zhongqi [1 ,2 ]
Xia, Yuanqing [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
关键词
Model predictive control (MPC); reinforcement learning (RL); data-driven method; nonlinear systems;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inspired by Willems and the co-authors' idea that continuously excited system trajectories can be used to represent the input-output behavior of discrete-time linear time-invariant (DT LTI) systems. We extend this idea to nonlinear systems. In this paper, we propose a data-driven model predictive control (MPC) scheme with reinforcement learning (RL) for unknown nonlinear systems. We utilize the input-output data of the system to form Hankel matrices to represent the system model implicitly. The accuracy of the prediction is improved by updating the data online. Another core idea of this scheme is to combine the standard MPC with RL to approximate the terminal cost function by TD-learning to ensure the closed-loop stability of the system. Simulation experiments on the cart-damper-spring system were used to demonstrate the feasibility of the proposed algorithm.
引用
收藏
页码:2404 / 2409
页数:6
相关论文
共 50 条
  • [1] Data-Driven Reinforcement Learning Control for Quadrotor Systems
    Dang, Ngoc Trung
    Dao, Phuong Nam
    INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND ROBOTICS RESEARCH, 2024, 13 (05): : 495 - 501
  • [2] Data-driven Offline Reinforcement Learning for HVAC-systems
    Blad, Christian
    Bogh, Simon
    Kallesoe, Carsten Skovmose
    ENERGY, 2022, 261
  • [3] Data-Driven Fault-Tolerant Reinforcement Learning Containment Control for Nonlinear Multiagent Systems
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 416 - 426
  • [4] Online Data-Driven Inverse Reinforcement Learning for Deterministic Systems
    Asl, Hamed Jabbari
    Uchibe, Eiji
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 884 - 889
  • [5] Data-driven Distributed MPC for Load Frequency Control of Networked Nonlinear Power systems
    Jia, Yubin
    Zhou, Jun
    Yong, Panxiao
    Guo, Jun
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 802 - 807
  • [6] Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4406 - 4421
  • [7] Certified data-driven inverse reinforcement learning of Markov jump systems
    Xue, Wenqian
    Lewis, Frank L.
    Lian, Bosen
    AUTOMATICA, 2025, 176
  • [8] Data-Driven Internal Model Learning Control for Nonlinear Systems
    Zhang, Huimin
    Chi, Ronghu
    Huang, Biao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 718 - 728
  • [9] Data-Driven Internal Model Learning Control for Nonlinear Systems
    Zhang, Huimin
    Chi, Ronghu
    Huang, Biao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 718 - 728
  • [10] A Data-Driven Pandemic Simulator with Reinforcement Learning
    Zhang, Yuting
    Ma, Biyang
    Cao, Langcai
    Liu, Yanyu
    ELECTRONICS, 2024, 13 (13)