Gromov-Hausdorff Stable Signatures for Shapes using Persistence

被引:125
作者
Chazal, Frederic
Cohen-Steiner, David [1 ]
Guibas, Leonidas J. [2 ]
Memoli, Facundo [3 ]
Oudot, Steve Y.
机构
[1] INRIA Sophia, Sophia Antipolis, France
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
RECOGNITION; SIMILARITY; DISTANCE;
D O I
10.1111/j.1467-8659.2009.01516.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a family of signatures for finite metric spaces, possibly, endowed with real valued functions, based on the persistence diagrams of suitable filtrations built on top of these spaces. We prove the stability, of our signatures under Gromov-Hausdorff perturbations of the spaces. We also extend these results to metric spaces equipped with measures. Our signatures are well-suited for the study of unstructured point cloud data, which we illustrate through an application in shape classification.
引用
收藏
页码:1393 / 1403
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2007, Proc. SGP
[2]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[3]  
[Anonymous], 66 DISMI U STUD MOD
[4]  
[Anonymous], GROMOV HAUSDOR UNPUB
[5]  
[Anonymous], 2001, ALGEBRAIC TOPOLOGY
[6]   Shape matching and object recognition using shape contexts [J].
Belongie, S ;
Malik, J ;
Puzicha, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :509-522
[7]  
Ben Hamza A, 2003, LECT NOTES COMPUT SC, V2886, P378
[8]   Efficient computation of isometry-invariant distances between surfaces [J].
Bronstein, Alexander M. ;
Bronstein, Michael M. ;
Kimmel, Ron .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (05) :1812-1836
[9]   Topology-Invariant Similarity of Nonrigid Shapes [J].
Bronstein, Alexander M. ;
Bronstein, Michael M. ;
Kimmel, Ron .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (03) :281-301
[10]  
Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]