A note on orthogonal polynomials described by Chebyshev polynomials

被引:5
作者
Castillo, K. [1 ]
de Jesus, M. N. [2 ]
Petronilho, J. [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
[2] Polytech Inst Viseu, ESTGV, CI & DETS IPV, Campus Politecn Repeses, P-3504510 Viseu, Portugal
关键词
Orthogonal polynomials; Chebyshev polynomials; Polynomial mappings; Positive measures; Semiclassical orthogonal polynomials;
D O I
10.1016/j.jmaa.2020.124906
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this note is to extend in a simple and unified way some results on orthogonal polynomials with respect to the weight function vertical bar T-m(x)vertical bar(p)/root 1 - x(2), -1 < x <1, where T-m is the Chebyshev polynomial of the first kind of degree m and p > -1. Namely, this note provides an explicit representation of the recurrence coefficients for polynomials orthogonal with respect to the above weight function and an explicit representation for these polynomials in terms of known functions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:6
相关论文
共 13 条
[1]   SIEVED ULTRASPHERICAL POLYNOMIALS [J].
ALSALAM, W ;
ALLAWAY, WR ;
ASKEY, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :39-55
[2]   An electrostatic interpretation of the zeros of sieved ultraspherical polynomials [J].
Castillo, K. ;
de Jesus, M. N. ;
Petronilho, J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)
[3]   On semiclassical orthogonal polynomials via polynomial mappings [J].
Castillo, K. ;
de Jesus, M. N. ;
Petronilho, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) :1801-1821
[4]   ON SIEVED ORTHOGONAL POLYNOMIALS .2. RANDOM-WALK POLYNOMIALS [J].
CHARRIS, J ;
ISMAIL, MEH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (02) :397-415
[5]   SIEVED ORTHOGONAL POLYNOMIALS .7. GENERALIZED POLYNOMIAL-MAPPINGS [J].
CHARRIS, JA ;
ISMAIL, MEH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :71-93
[6]   ON SIEVED ORTHOGONAL POLYNOMIALS .10. GENERAL BLOCKS OF RECURRENCE RELATIONS [J].
CHARRIS, JA ;
ISMAIL, MEH ;
MONSALVE, S .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 163 (02) :237-267
[7]   Recurrence Relation and Differential Equation for a Class of Orthogonal Polynomials [J].
Cvetkovic, Aleksandar S. ;
Milovanovic, Gradimir V. ;
Vasovic, Nevena .
RESULTS IN MATHEMATICS, 2018, 73 (01)
[8]   Orthogonal Polynomials for Modified Chebyshev Measure of the First Kind [J].
Cvetkovic, Aleksandar S. ;
Matejic, Marjan M. ;
Milovanovic, Gradimir V. .
RESULTS IN MATHEMATICS, 2016, 69 (3-4) :443-455
[9]   On orthogonal polynomials obtained via polynomial mappings [J].
de Jesus, M. N. ;
Petronilho, J. .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (12) :2243-2277
[10]  
Gautschi, 1993, AEQUATIONES MATH, V46, P174, DOI DOI 10.1007/BF01834006