Let h be a quasiconformal (qc) mapping of the unit disk U onto a Lyapunov domain. We show that h maps subdomains of Lyapunov type of U, which touch the boundary of U, onto domains of similar type. In particular if h is a harmonic qc (hqc) mapping of U onto a Lyapunov domain, using it, we prove that h is co-Lipschitz (co-Lip) on U. This settles an open intriguing problem.
机构:
John Paul II Catholic Univ Lublin, Fac Math & Nat Sci, PL-20950 Lublin, Poland
Inst Math & Informat Technol, State Sch Higher Educ Chelm, PL-22100 Chelm, PolandJohn Paul II Catholic Univ Lublin, Fac Math & Nat Sci, PL-20950 Lublin, Poland
Partyka, Dariusz
Sakan, Ken-ichi
论文数: 0引用数: 0
h-index: 0
机构:
Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, Sugimoto, Osaka 558, JapanJohn Paul II Catholic Univ Lublin, Fac Math & Nat Sci, PL-20950 Lublin, Poland
机构:
Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
Liu, Jinsong
Zhu, Jian-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China