Microresonator Kerr frequency combs with high conversion efficiency

被引:176
作者
Xue, Xiaoxiao [1 ,2 ]
Wang, Pei-Hsun [2 ]
Xuan, Yi [2 ,3 ]
Qi, Minghao [2 ,3 ]
Weiner, Andrew M. [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Purdue Univ, Sch Elect & Comp Engn, 465 Northwestern Ave, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, 1205 West State St, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Microresonator; optical frequency comb; Kerr effect; soliton; efficiency; GENERATION; RESONATORS;
D O I
10.1002/lpor.201600276
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve approximate to 30% conversion efficiency (approximate to 200mml:mspace width="0.33em"mml:mspace> mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Nonlinear conversion efficiency in Kerr frequency comb generation [J].
Bao, Changjing ;
Zhang, Lin ;
Matsko, Andrey ;
Yan, Yan ;
Zhao, Zhe ;
Xie, Guodong ;
Agarwal, Anuradha M. ;
Kimerling, Lionel C. ;
Michel, Jurgen ;
Maleki, Lute ;
Willner, Alan E. .
OPTICS LETTERS, 2014, 39 (21) :6126-6129
[2]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[3]   Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J].
Coen, Stephane ;
Randle, Hamish G. ;
Sylvestre, Thibaut ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (01) :37-39
[4]  
Cole D. C., 2016, ADV PHOTONICS
[5]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[6]   Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs [J].
Del'Haye, Pascal ;
Beha, Katja ;
Papp, Scott B. ;
Diddams, Scott A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[7]   Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J].
Ferdous, Fahmida ;
Miao, Houxun ;
Leaird, Daniel E. ;
Srinivasan, Kartik ;
Wang, Jian ;
Chen, Lei ;
Varghese, Leo Tom ;
Weiner, Andrew M. .
NATURE PHOTONICS, 2011, 5 (12) :770-776
[8]  
Fülöp A, 2016, CONF LASER ELECTR
[9]   Silicon-chip mid-infrared frequency comb generation [J].
Griffith, Austin G. ;
Lau, Ryan K. W. ;
Cardenas, Jaime ;
Okawachi, Yoshitomo ;
Mohanty, Aseema ;
Fain, Romy ;
Lee, Yoon Ho Daniel ;
Yu, Mengjie ;
Phare, Christopher T. ;
Poitras, Carl B. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE COMMUNICATIONS, 2015, 6
[10]   Dispersion engineering of crystalline resonators via microstructuring [J].
Grudinin, Ivan S. ;
Yu, Nan .
OPTICA, 2015, 2 (03) :221-224