Revealing the basins of convergence in the planar equilateral restricted four-body problem

被引:56
作者
Zotos, Euaggelos E. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, Sch Sci, Thessaloniki 54124, Greece
关键词
Restricted four body-problem; Equilibrium points; Basins of attraction; Fractal basins boundaries; EQUILIBRIUM POINTS; PERIODIC-ORBITS; GRAVITATIONAL CAPTURE; RADIATION PRESSURE; STABILITY REGIONS; TROJAN ASTEROIDS; EPSILON-AURIGAE; FRACTAL BASINS; OBLATENESS; DYNAMICS;
D O I
10.1007/s10509-016-2973-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The planar equilateral restricted four-body problem where two of the primaries have equal masses is used in order to determine the Newton-Raphson basins of convergence associated with the equilibrium points. The parametric variation of the position of the libration points is monitored when the value of the mass parameter m(3) varies in predefined intervals. The regions on the configuration (x, y) plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson iterative scheme. The correlations between the attracting domains of the equilibrium points and the corresponding number of iterations needed for obtaining the desired accuracy are also illustrated. We perform a thorough and systematic numerical investigation by demonstrating how the dynamical parameter m(3) influences the shape, the geometry and the degree of fractality of the converging regions. Our numerical outcomes strongly indicate that the mass parameter is indeed one of the most influential factors in this dynamical system.
引用
收藏
页数:19
相关论文
共 42 条
[1]   Wada basins and chaotic invariant sets in the Henon-Heiles system -: art. no. 066208 [J].
Aguirre, J ;
Vallejo, JC ;
Sanjuán, MAF .
PHYSICAL REVIEW E, 2001, 64 (06) :11
[2]   Fractal structures in nonlinear dynamics [J].
Aguirre, Jacobo ;
Viana, Ricardo L. ;
Sanjuan, Miguel A. F. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :333-386
[3]   Transport orbits in an equilateral restricted four-body problem [J].
Alvarez-Ramirez, M. ;
Barrabes, E. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 121 (02) :191-210
[4]   Nonlinear stability analysis in a equilateral restricted four-body problem [J].
Alvarez-Ramirez, Martha ;
Skea, J. E. F. ;
Stuchi, T. J. .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 358 (01)
[5]  
[Anonymous], 2000, The mathematica book
[6]  
[Anonymous], 2010, 61 INT ASTR C IAC 20
[7]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[8]   Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system [J].
Baltagiannis, A. N. ;
Papadakis, K. E. .
PLANETARY AND SPACE SCIENCE, 2013, 75 :148-157
[9]   Families of periodic orbits in the restricted four-body problem [J].
Baltagiannis, A. N. ;
Papadakis, K. E. .
ASTROPHYSICS AND SPACE SCIENCE, 2011, 336 (02) :357-367
[10]   EQUILIBRIUM POINTS AND THEIR STABILITY IN THE RESTRICTED FOUR-BODY PROBLEM [J].
Baltagiannis, A. N. ;
Papadakis, K. E. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08) :2179-2193