Anchored metallocene linear low-density polyethene cellulose nanocrystal composites

被引:2
作者
Hendren, Keith D. [1 ]
Hough, Sarita A. [2 ,3 ]
Knott, Kenneth [2 ,3 ]
Lu, Wei [4 ]
Deck, Paul A. [2 ,3 ]
Foster, E. Johan [1 ,5 ]
机构
[1] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA USA
[2] Virginia Tech, Dept Chem, Blacksburg, VA USA
[3] Virginia Tech, Macromol Innovat Inst, Blacksburg, VA USA
[4] Tosoh Biosci LLC, King Of Prussia, PA USA
[5] Univ British Columbia, Chem & Biol Engn, Vancouver, BC, Canada
关键词
polyethene; cellulose nanocrystal; metallocene; catalyst; composite; polymer; POLYMERIZATION-FILLING TECHNIQUE; ZIEGLER-NATTA CATALYSIS; TRANSITION; NANOCOMPOSITES; COPOLYMERS; EXTRUSION; BEHAVIOR; OLEFINS;
D O I
10.1002/pi.6146
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cellulose nanocrystals (CNCs) were functionalized with different loadings of metallocene catalyst and subjected to in situ polymerization with ethene and 1-hexene to yield linear low-density polyethene (LLDPE) polymer matrix composites (PMCs). CNC content was determined with thermogravimetric analysis, confirming that the PMCs varied in their CNC loadings from 3.6 to 11.4 wt%. Differential scanning calorimetric, gel permeation chromatographic and NMR spectroscopic analyses revealed that the LLDPE (matrix) components of these PMCs shared similar physical properties. Dynamic mechanical analysis showed a general increase in the storage modulus of the PMCs with increasing CNC content. These relative differences in storage modulus were even more evident at higher temperatures. Uniaxial tensile testing of the PMCs found a notable increase in Young's modulus between the 3.6 wt% CNC PMC (240 +/- 50 MPa) and the 11.4 wt% CNC PMC (391 +/- 7 MPa), while the elongation at break decreased from the 3.6 wt% CNC PMC (400 +/- 90%) to the 11.4 wt% CNC PMC (70 +/- 10%). All PMCs showed similar yield strengths of ca 10 MPa. These mechanical properties showed that the method of dispersing CNCs in LLDPE reported herein affords the highest moduli reported thus far in LLDPE-CNC PMCs. The ability of the catalyst to incorporate co-monomer olefins may allow for the incorporation of smart CNCs into ethane-based polymers. (c) 2020 Society of Industrial Chemistry
引用
收藏
页码:564 / 572
页数:9
相关论文
共 46 条
[1]   THE CRYSTALLIZATION BEHAVIOR OF RANDOM COPOLYMERS OF ETHYLENE [J].
ALAMO, RG ;
MANDELKERN, L .
THERMOCHIMICA ACTA, 1994, 238 :155-201
[2]  
Alexandre M, 2000, MACROMOL RAPID COMM, V21, P931, DOI 10.1002/1521-3927(20000801)21:13<931::AID-MARC931>3.3.CO
[3]  
2-O
[4]   Polymerization-filling technique:: An efficient way to improve the mechanical properties of polyethylene composites [J].
Alexandre, M ;
Martin, E ;
Dubois, P ;
Marti, MG ;
Jérôme, R .
CHEMISTRY OF MATERIALS, 2001, 13 (02) :236-237
[6]   Easy one-pot method to control the morphology of polyethylene/carbon nanotube nanocomposites using metallocene catalysts [J].
Bahuleyan, Bijal Kottukkal ;
Atieh, Muataz Ali ;
De, Sadhan Kumar ;
Khan, Masihullah Jabarulla ;
Al-Harthi, Mamdouh A. .
JOURNAL OF POLYMER RESEARCH, 2012, 19 (02)
[7]   Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites [J].
Bonduel, D ;
Mainil, ML ;
Alexandre, M ;
Monteverde, F ;
Dubois, P .
CHEMICAL COMMUNICATIONS, 2005, (06) :781-783
[8]   Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions [J].
Borjesson, Mikaela ;
Sahlin, Karin ;
Bernin, Diana ;
Westman, Gunnar .
JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (10)
[10]   Review of Hydrogels and Aerogels Containing Nanocellulose [J].
De France, Kevin J. ;
Hoare, Todd ;
Cranston, Emily D. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4609-4631