Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis

被引:108
作者
Kim, Junyong [1 ]
Li, Beryl X. [1 ]
Huang, Richard Y-C [2 ]
Qiao, Jennifer X. [3 ]
Ewing, William R. [3 ]
MacMillan, David W. C. [1 ]
机构
[1] Princeton Univ, Merck Ctr Catalysis, Princeton, NJ 08544 USA
[2] Bristol Myers Squibb Co, Res & Dev, Pharmaceut Candidate Optimizat, Princeton, NJ 08542 USA
[3] Bristol Myers Squibb Co, Discovery Chem Res & Dev, Princeton, NJ 08542 USA
关键词
NATIVE PROTEINS; BIOCONJUGATION; PEPTIDES; REAGENTS; TYROSINE; TRYPTOPHAN; OXIDATION; FLAVINS; REDUCTION;
D O I
10.1021/jacs.0c09926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioconjugation technologies have revolutionized t he practice of biology and medicine by allowing access to novel biomolecular scaffolds. New methods for residue-selective bioconjugation are highly sought to expand the toolbox for a variety of bioconjugation applications. Herein we report a site-selective methionine bioconjugation protocol that uses photoexcited lumiflavin to generate open-shell intermediates. This reduction-potential-gated strategy enables access to residues unavailable with traditional nucleophilicity-based conjugation methods. To demonstrate the versatility and robustness of this new protocol, we have modified various proteins and further utilized this functional handle to append diverse biological payloads.
引用
收藏
页码:21260 / 21266
页数:7
相关论文
共 47 条
[1]   Selective tryptophan modification with rhodium carbenoids in aqueous solution [J].
Antos, JM ;
Francis, MB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) :10256-10257
[2]   Tyrosine Bioconjugation through Aqueous Ene-Type Reactions: A Click-Like Reaction for Tyrosine [J].
Ban, Hitoshi ;
Gavrilyuk, Julia ;
Barbas, Carlos F., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (05) :1523-+
[3]   The One-Electron Reduction Potential of Methionine-Containing Peptides Depends on the Sequence [J].
Berges, Jacqueline ;
de Oliveira, Pedro ;
Fourre, Isabelle ;
Houee-Levin, Chantal .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (31) :9352-9362
[4]  
Bloom S, 2018, NAT CHEM, V10, P205, DOI [10.1038/NCHEM.2888, 10.1038/nchem.2888]
[5]   Cell-Penetrating Peptides: a Useful Tool for the Delivery of Various Cargoes Into Cells [J].
Bohmova, E. ;
Machova, D. ;
Pechar, M. ;
Pola, R. ;
Venclikova, K. ;
Janouskova, O. ;
Etrych, T. .
PHYSIOLOGICAL RESEARCH, 2018, 67 :S267-S279
[6]   Photocatalytic Modification of Amino Acids, Peptides, and Proteins [J].
Bottecchia, Cecilia ;
Noel, Timothy .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (01) :26-42
[7]   Advances in Chemical Protein Modification [J].
Boutureira, Omar ;
Bernardes, Goncalo J. L. .
CHEMICAL REVIEWS, 2015, 115 (05) :2174-2195
[8]   Site-Selective Lysine Modification of Native Proteins and Peptides via Kinetically Controlled Labeling [J].
Chen, Xi ;
Muthoosamy, Kasturi ;
Pfisterer, Anne ;
Neumann, Boris ;
Weil, Tanja .
BIOCONJUGATE CHEMISTRY, 2012, 23 (03) :500-508
[9]   A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation [J].
Christian, Alec H. ;
Jia, Shang ;
Cao, Wendy ;
Zhang, Patricia ;
Meza, Arismel Tena ;
Sigman, Matthew S. ;
Chang, Christopher J. ;
Toste, F. Dean .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (32) :12657-12662
[10]   Residue-Specific Peptide Modification: A Chemist's Guide [J].
deGruyter, Justine N. ;
Malins, Lara R. ;
Baran, Phil S. .
BIOCHEMISTRY, 2017, 56 (30) :3863-3873