Ramanujan type congruences for the Klingen-Eisenstein series

被引:1
作者
Kikuta, Toshiyuki [1 ]
Takemori, Sho [2 ]
机构
[1] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Shiga 5258577, Japan
[2] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2014年 / 84卷 / 02期
关键词
Congruences for modular forms; Klingen-Eisenstein series; Cusp forms; Ramanujan; SIEGEL MODULAR-FORMS; EIGENVALUES;
D O I
10.1007/s12188-014-0098-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the case of Siegel modular forms of degree , we prove that, for almost all prime ideals in any ring of algebraic integers, mod cusp forms are congruent to true cusp forms of the same weight. As an application we give congruences for the Klingen-Eisenstein series and cusp forms, which can be regarded as a generalization of Ramanujan's congruence. We will conclude by giving numerical examples.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 17 条
[12]   POLES AND RESIDUES OF STANDARD L-FUNCTIONS ATTACHED TO SIEGEL MODULAR-FORMS [J].
MIZUMOTO, S .
MATHEMATISCHE ANNALEN, 1991, 289 (04) :589-612
[13]   Congruences for Fourier coefficients of lifted siegel modular forms I: Eisenstein lifts [J].
Mizumoto, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2005, 75 (1) :97-120
[14]   On integrality of Eisenstein liftings [J].
Mizumoto, S .
MANUSCRIPTA MATHEMATICA, 1996, 89 (02) :203-235
[15]   CONGRUENCES FOR EIGENVALUES OF HECKE OPERATORS ON SIEGEL MODULAR-FORMS OF DEGREE-2 [J].
MIZUMOTO, SI .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :149-161
[16]   Note on mod p Siegel modular forms II [J].
Nagaoka, S .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (04) :821-826
[17]  
SHIMURA G, 1975, NACHR AKAD WISS GOTT, V17