Ramanujan type congruences for the Klingen-Eisenstein series

被引:1
作者
Kikuta, Toshiyuki [1 ]
Takemori, Sho [2 ]
机构
[1] Ritsumeikan Univ, Coll Sci & Engn, Kusatsu, Shiga 5258577, Japan
[2] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2014年 / 84卷 / 02期
关键词
Congruences for modular forms; Klingen-Eisenstein series; Cusp forms; Ramanujan; SIEGEL MODULAR-FORMS; EIGENVALUES;
D O I
10.1007/s12188-014-0098-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the case of Siegel modular forms of degree , we prove that, for almost all prime ideals in any ring of algebraic integers, mod cusp forms are congruent to true cusp forms of the same weight. As an application we give congruences for the Klingen-Eisenstein series and cusp forms, which can be regarded as a generalization of Ramanujan's congruence. We will conclude by giving numerical examples.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 17 条
[1]   THE FOURIER COEFFICIENTS OF SIEGEL EINSTEIN SERIES [J].
BOCHERER, S .
MANUSCRIPTA MATHEMATICA, 1984, 45 (03) :273-288
[2]   Sturm type theorem for Siegel modular forms of genus 2 modulo p [J].
Choi, Dohoon ;
Choie, Youngju ;
Kikuta, Toshiyuki .
ACTA ARITHMETICA, 2013, 158 (02) :129-139
[3]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507
[4]  
Faltings G., 1990, ERGEBNISSE MATH
[5]   RING OF MODULAR FORMS OF DEGREE 2 OVER Z [J].
IGUSA, J .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (01) :149-183
[6]   Congruences for Hecke eigenvalues of Siegel modular forms [J].
Katsurada, H. ;
Mizumoto, S. .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (02) :129-152
[7]   Ramanujan type congruences for modular forms of several variables [J].
Kikuta, Toshiyuki ;
Nagaoka, Shoyu .
RAMANUJAN JOURNAL, 2013, 32 (01) :143-157
[8]  
Klingen H., 1990, Introductory Lectures on Siegel Modular Forms (Cambridge Studies in Advanced Mathematics)