The adiponectin gene SNP+45 is associated with coronary artery disease in Type 2 (non-insulin-dependent) diabetes mellitus

被引:103
作者
Lacquemant, C
Froguel, P
Lobbens, S
Izzo, P
Dina, C
Ruiz, J
机构
[1] Univ London Imperial Coll Sci Technol & Med, Genom Med Dept, London, England
[2] Univ London Imperial Coll Sci Technol & Med, Hammersmith Genome Ctr, London, England
[3] Inst Pasteur, CNRS 8090, Inst Biol, F-59019 Lille, France
[4] Univ Lausanne Hosp, Div Endocrinol, Lausanne, Switzerland
基金
英国医学研究理事会;
关键词
adiponectin; APM1; gene; case-control study; coronary artery disease; Type; 2; diabetes;
D O I
10.1111/j.1464-5491.2004.01224.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background The ACRP30/adiponectin gene on chromosome 3q27, a region linked to the metabolic syndrome, encodes for the abundant adipocyte-specific secreted protein. Consistent rodent and human studies suggested that this adipokine may be a molecular link between metabolic and cardiovascular diseases. Aims In order to investigate the role of single nucleotide polymorphisms (SNPs) within the APM1 gene in the susceptibility to coronary artery disease (CAD), we performed a case-control study on Caucasian Type 2 (non-insulin-dependent) diabetic patients, a population at high-risk for CAD. Methods Five APM1 SNPs were genotyped in 162 Type 2 diabetic French and Swiss subjects with CAD and in 315 Type 2 diabetic French and Swiss subjects without CAD. Results In univariate analysis, SNP+45 T>G was associated with CAD (OR 1.9 95% CI 1.2-2.9 P = 0.0036). In multivariate analysis, SNP+45 T>G remained associated with CAD (OR 1.2 95% CI 0.8-1.9 P = 0.017), independently of classical cardiovascular risk factors including components of the metabolic syndrome. SNP haplotype analyses revealed a CAD protective combination of all SNP wild-type alleles (OR 0.5 95% CI 0.3-0.7 P = 0.0006). Conclusions Our study, performed in diabetic subjects, revealed an association between individual SNP+45 in the APM1 gene and CAD. Furthermore, the susceptibility for CAD due to SNP+45 was independent of classic cardiovascular risk factors. Further studies will be necessary to confirm the role of SNP+45 in the development of CAD. However, ACRP30/adiponectin may contribute to atherosclerosis susceptibility in high-risk populations such as Type 2 diabetic subjects.
引用
收藏
页码:776 / 781
页数:6
相关论文
共 26 条
[1]   Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity [J].
Arita, Y ;
Kihara, S ;
Ouchi, N ;
Takahashi, M ;
Maeda, K ;
Miyagawa, J ;
Hotta, K ;
Shimomura, I ;
Nakamura, T ;
Miyaoka, K ;
Kuriyama, H ;
Nishida, M ;
Yamashita, S ;
Okubo, K ;
Matsubara, K ;
Muraguchi, M ;
Ohmoto, Y ;
Funahashi, T ;
Matsuzawa, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (01) :79-83
[2]   Listening to silence and understanding nonsense: Exonic mutations that affect splicing [J].
Cartegni, L ;
Chew, SL ;
Krainer, AR .
NATURE REVIEWS GENETICS, 2002, 3 (04) :285-298
[3]   The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome [J].
Comuzzie, AG ;
Funahashi, T ;
Sonnenberg, G ;
Martin, LJ ;
Jacob, HJ ;
Black, AEK ;
Maas, D ;
Takahashi, M ;
Kihara, S ;
Tanaka, S ;
Matsuzawa, Y ;
Blangero, J ;
Cohen, D ;
Kissebah, A .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2001, 86 (09) :4321-4325
[4]   A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27 [J].
Francke, S ;
Manraj, M ;
Lacquemant, C ;
Lecoeur, C ;
Leprêtre, F ;
Passa, P ;
Hebe, A ;
Corset, L ;
Yan, SLK ;
Lahmidi, S ;
Jankee, S ;
Gunness, TK ;
Ramjuttun, US ;
Balgobin, V ;
Dina, C ;
Froguel, P .
HUMAN MOLECULAR GENETICS, 2001, 10 (24) :2751-2765
[5]   Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice [J].
Fruebis, J ;
Tsao, TS ;
Javorschi, S ;
Ebbets-Reed, D ;
Erickson, MRS ;
Yen, FT ;
Bihain, BE ;
Lodish, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :2005-2010
[6]   Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population [J].
Hara, K ;
Boutin, P ;
Mori, Y ;
Tobe, K ;
Dina, C ;
Yasuda, K ;
Yamauchi, T ;
Otabe, S ;
Okada, T ;
Eto, K ;
Kadowaki, H ;
Hagura, R ;
Akanuma, Y ;
Yazaki, Y ;
Nagai, R ;
Taniyama, M ;
Matsubara, K ;
Yoda, M ;
Nakano, Y ;
Kimura, S ;
Tomita, M ;
Kimura, S ;
Ito, C ;
Froguel, P ;
Kadowaki, T .
DIABETES, 2002, 51 (02) :536-540
[7]   Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients [J].
Hotta, K ;
Funahashi, T ;
Arita, Y ;
Takahashi, M ;
Matsuda, M ;
Okamoto, Y ;
Iwahashi, H ;
Kuriyama, H ;
Ouchi, N ;
Maeda, K ;
Nishida, M ;
Kihara, S ;
Sakai, N ;
Nakajima, T ;
Hasegawa, K ;
Muraguchi, M ;
Ohmoto, Y ;
Nakamura, T ;
Yamashita, S ;
Hanafusa, T ;
Matsuzawa, Y .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2000, 20 (06) :1595-1599
[8]   Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome [J].
Kissebah, AH ;
Sonnenberg, GE ;
Myklebust, J ;
Goldstein, M ;
Broman, K ;
James, RG ;
Marks, JA ;
Krakower, GR ;
Jacob, HJ ;
Weber, A ;
Martin, L ;
Blangero, J ;
Comuzzie, AG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14478-14483
[9]   Disruption of adiponectin causes insulin resistance and neointimal formation. [J].
Kubota, N ;
Terauchi, Y ;
Yamauchi, T ;
Kubota, T ;
Moroi, M ;
Matsui, J ;
Eto, K ;
Yamashita, T ;
Kamon, J ;
Satoh, H ;
Yano, W ;
Froguel, P ;
Nagai, R ;
Kimura, S ;
Kadowaki, T ;
Noda, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :25863-25866
[10]   CDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (Adipose most abundant gene transcript 1) [J].
Maeda, K ;
Okubo, K ;
Shimomura, I ;
Funahashi, T ;
Matsuzawa, Y ;
Matsubara, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 221 (02) :286-289