A generalization of the Borel-Cantelli Lemma

被引:28
作者
Petrov, VV [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
关键词
Borel-Cantelli Lemma; generalizations of the Borel-Cantelli Lemma;
D O I
10.1016/j.spl.2004.01.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new generalization of the Borel-Cantelli Lemma is obtained. Several earlier generalizations are special cases. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 10 条
[1]   ON THE APPLICATION OF THE BOREL-CANTELLI LEMMA [J].
CHUNG, KL ;
ERDOS, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (JAN) :179-186
[2]  
Erd P., 1959, ANN U SCI BUDAP, V2, P93
[3]  
Kochen Simon, 1964, Illinois Journal of Mathematics, V8, P248
[4]  
Lamperti John, 1963, J MATH ANAL APPL, V6, P58
[5]  
Martikainen A. I., 1990, J MATH SCI, V184, p[200, 540]
[6]  
Martikainen A.I., 1990, ZAPISKI NAUCH SEMIN, V184, P200
[7]  
ORTEGA J, 1983, STOCHASTIC PROCESS A, V16, P85
[8]  
PETROV V.V., 1995, Limit Theorems of Probability Theory: Sequences of Independent Random Variables
[9]   A note on the Borel-Cantelli lemma [J].
Petrov, VV .
STATISTICS & PROBABILITY LETTERS, 2002, 58 (03) :283-286
[10]  
Spitzer F, 2013, Principles of random walk