HAAR WAVELETS ON THE LEBESGUE SPACES OF LOCAL FIELDS OF POSITIVE CHARACTERISTIC

被引:6
作者
Behera, Biswaranjan [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
wavelet; multiresolution analysis; local field; unconditional basis; democratic basis; greedy basis; BASES;
D O I
10.4064/cm136-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for L-P(K), 1 < p < infinity. We also prove that this system, normalized in L-P(K), is a democratic basis of L-P(K). This also proves that the Haar system is a greedy basis of L-P(K) for 1 <p < infinity
引用
收藏
页码:149 / 168
页数:20
相关论文
共 27 条
[1]  
[Anonymous], BANACH CTR PUBL
[2]  
Behera B., 2013, PREPRINT
[3]  
Behera B., 2013, COMMUN MATH ANAL, V15, P52
[4]  
Behera B., COLLECT MAT IN PRESS
[5]   Multiresolution analysis on local fields and characterization of scaling functions [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (02) :181-202
[6]   Wavelet packets and wavelet frame packets on local fields of positive characteristic [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) :1-14
[7]   A wavelet theory for local fields and related groups [J].
Benedetto, JJ ;
Benedetto, RL .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :423-456
[8]   Wavelet bases in the Lebesgue spaces on the field of p-adic numbers [J].
Chuong N.M. ;
Duong D.V. .
P-Adic Numbers, Ultrametric Analysis, and Applications, 2013, 5 (2) :106-121
[9]  
Dahlke S., 1994, Wavelets, Images and Surface Fitting., P141
[10]   WAVELET BASES IN L(P)(R) [J].
GRIPENBERG, G .
STUDIA MATHEMATICA, 1993, 106 (02) :175-187