Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain

被引:20
作者
Yang, Fan [1 ]
Ren, Yu-Peng [1 ]
Li, Xiao-Xiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse problem; identifying the unknown source; ill-posed problem; regularization method; columnar symmetric domain; DEPENDENT HEAT-SOURCE; SOURCE TERMS; FUNDAMENTAL-SOLUTIONS; IDENTIFICATION; SPACEWISE; EQUATION; BOUNDARY;
D O I
10.1080/17415977.2017.1384825
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, an inverse source problem for the Helium Production-Diffusion Equation on a columnar symmetric domain is investigated. Based on an a priori assumption, the optimal error bound analysis and a conditional stability result are given. This problem is ill-posed and Landweber iteration regularization method is used to deal with this problem. Convergence estimates are presented under the priori and the posteriori regularization choice rules. For the a priori and the a posteriori regularization parameters choice rules, the convergence error estimates are all order optimal. Numerical examples are given to show that the regularization method is effective and stable for dealing with this ill-posed problem.
引用
收藏
页码:1109 / 1129
页数:21
相关论文
共 45 条
[1]   The method of fundamental solutions for the inverse space-dependent heat source problem [J].
Ahmadabadi, M. Nili ;
Arab, M. ;
Ghaini, F. M. Maalek .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (10) :1231-1235
[2]  
[Anonymous], 1996, INTRO MATH THEORY IN
[3]   Quantifying Tectonic and Geomorphic Interpretations of Thermochronometer Data with Inverse Problem Theory [J].
Bao, G. ;
Dou, Y. ;
Ehlers, T. A. ;
Li, P. ;
Wang, Y. ;
Xu, Z. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (01) :129-146
[4]   Radiogenic Source Identification for the Helium Production-Diffusion Equation [J].
Bao, Gang ;
Ehlers, Todd A. ;
Li, Peijun .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) :1-20
[5]   Identifying an unknown source term in a spherically symmetric parabolic equation [J].
Cheng, Wei ;
Fu, Chu-Li .
APPLIED MATHEMATICS LETTERS, 2013, 26 (04) :387-391
[6]   Identifying an unknown source term in radial heat conduction [J].
Cheng, Wei ;
Ma, Yun-Jie ;
Fu, Chu-Li .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2012, 20 (03) :335-349
[7]   Source term identification for an axisymmetric inverse heat conduction problem [J].
Cheng, Wei ;
Zhao, Ling-Ling ;
Fu, Chu-Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :142-148
[8]   Reconstruction of a spacewise-dependent heat source in a time-dependent heat diffusion process [J].
D'haeyer, Sam ;
Johansson, B. Tomas ;
Slodicka, Marian .
IMA JOURNAL OF APPLIED MATHEMATICS, 2014, 79 (01) :33-53
[9]   Identifying an unknown source term in a heat equation [J].
Dou, Fang-Fang ;
Fu, Chu-Li ;
Yang, Fan .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (07) :901-913
[10]   Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation [J].
Dou, Fang-Fang ;
Fu, Chu-Li ;
Yang, Feng-Lian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :728-737