Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer

被引:44
|
作者
Yu, Yu [1 ,2 ]
Sun, Yongbin [3 ]
Cao, Changyan [1 ,2 ]
Yang, Shuliang [1 ,2 ]
Liu, Hua [1 ,2 ]
Li, Ping [1 ,2 ]
Huang, Peipei [3 ]
Song, Weiguo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
SELF-ASSEMBLED MONOLAYERS; ACTIVATED CARBONS; GRAPHITE OXIDE; PERFORMANCE; SHEETS;
D O I
10.1039/c4ta00905c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diethylene-glycol/graphene nano-composites were produced by a simple mild solvothermal method, in which diethylene glycol was grafted onto the surfaces of reduced graphene oxides (RGO) as an inter-layer spacer to spatially separate graphene sheets, i.e. to prevent the aggregation of graphene single sheets. The presence of diethylene glycol was confirmed by several characterizations, including IR, XPS, and AFM. Because of the chain length and electrolyte affinity of the diethylene glycol spacer, most of the surface area of graphene single layer sheets could be accessed by electrolyte, leading to high capacity as supercapacitor electrodes with an impressive electrochemical capacitance (237.8 F g(-1) at a charging current of 0.1 A g(-1)), outstanding rate performances (182.9 F g(-1) at 20 A g(-1)), and excellent cycling stabilities (less than 5 and 10% decline after 2000 and 10 000 cycles). The diethylene-glycol/graphene nano-composites are thus particularly promising for "high-power densities" and "long cycle life" supercapacitor electrodes.
引用
收藏
页码:7706 / 7710
页数:5
相关论文
共 50 条
  • [21] Hardware Acceleration of Multilayer Perceptron Based on Inter-Layer Optimization
    Chen, Shenggang
    Lu, Zhonghai
    2019 IEEE 37TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2019), 2019, : 164 - 172
  • [22] Microwave exfoliated graphene-based materials for flexible solid-state supercapacitor
    Hamra, A. A. B.
    Lim, H. N.
    Huang, N. M.
    Gowthaman, N. S. K.
    Nakajima, H.
    Rahman, M. Mahbubur
    JOURNAL OF MOLECULAR STRUCTURE, 2020, 1220 (1220)
  • [23] Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application
    Zhao, Chen
    Shu, Kewei
    Wang, Caiyun
    Gambhir, Sanjeev
    Wallace, Gordon G.
    ELECTROCHIMICA ACTA, 2015, 172 : 12 - 19
  • [24] Flexible graphene/MnO2 composite papers for supercapacitor electrodes
    Li, Zhangpeng
    Mi, Yongjuan
    Liu, Xiaohong
    Liu, Sheng
    Yang, Shengrong
    Wang, Jinqing
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (38) : 14706 - 14711
  • [25] Highly Efficient Graphene-Based Ternary Composite Catalyst with Polydopamine Layer and Copper Nanoparticles
    Hu, Hua-Wen
    Xin, John H.
    Hu, Hong
    CHEMPLUSCHEM, 2013, 78 (12): : 1483 - 1490
  • [26] Applications of graphene-based composite hydrogels: a review
    Lu, Hao
    Zhang, Shengtao
    Guo, Lei
    Li, Weihua
    RSC ADVANCES, 2017, 7 (80) : 51008 - 51020
  • [27] Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions
    Baskoro, Febri
    Wong, Chak-Bor
    Kumar, S. Rajesh
    Chang, Chia-Wei
    Chen, Chien-Hao
    Chen, Dave W.
    Lue, Shingjiang Jessie
    JOURNAL OF MEMBRANE SCIENCE, 2018, 554 : 253 - 263
  • [28] High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes
    Cao, Jianyun
    Wang, Yaming
    Zhou, Yu
    Ouyang, Jia-Hu
    Jia, Dechang
    Guo, Lixin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 689 : 201 - 206
  • [29] Flexible Solid-State Supercapacitor Based on Graphene-based Hybrid Films
    Li, Meng
    Tang, Zhe
    Leng, Mei
    Xue, Junmin
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (47) : 7495 - 7502
  • [30] Lightweight Flexible Solid-State Supercapacitor Based On Metal-Graphene-Textile Composite Electrodes
    Song, Ya
    Zhang, Yingnan
    Yang, Huawei
    Yang, Lixia
    Bai, Liangjiu
    Wei, Donglei
    Wang, Wenxiang
    Liang, Ying
    Chen, Hou
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (17) : 8707 - 8716