Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller

被引:35
作者
Laoye, J. A. [1 ]
Vincent, U. E. [1 ]
Kareem, S. O. [1 ]
机构
[1] Olabisi Onabanjo Univ, Nonlinear & Stat Phys Res Grp, Dept Phys, Ago Iwoye, Nigeria
关键词
DELAYED FEEDBACK-CONTROL; PERIODIC-ORBITS; STABILIZATION; SYNCHRONIZATION; TRACKING;
D O I
10.1016/j.chaos.2007.04.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines chaos control of two four-dimensional chaotic systems, namely: the Lorenz-Stenflo (LS) system that models low-frequency short-wavelength gravity waves and a new four-dimensional chaotic system (Qi systems), containing three cross products. The control analysis is based on recursive backstepping design technique and it is shown to be effective for the 4D systems considered. Numerical simulations are also presented. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:356 / 362
页数:7
相关论文
共 45 条
[11]   Adaptive backstepping control of a class of chaotic systems [J].
Ge, SS ;
Wang, C ;
Lee, TH .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (05) :1149-1156
[12]   PID control of a chaotic system: An application to an epidemiological model [J].
Ghezzi, LL ;
Piccardi, C .
AUTOMATICA, 1997, 33 (02) :181-191
[13]   TRACKING UNSTABLE STEADY-STATES - EXTENDING THE STABILITY REGIME OF A MULTIMODE LASER SYSTEM [J].
GILLS, Z ;
IWATA, C ;
ROY, R ;
SCHWARTZ, IB ;
TRIANDAF, I .
PHYSICAL REVIEW LETTERS, 1992, 69 (22) :3169-3172
[14]   Time-delayed feedback control of time-delay chaotic systems [J].
Guan, XP ;
Chen, CL ;
Peng, HP ;
Fan, ZP .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :193-205
[15]   Chaos control of third-order phase-locked loops using backstepping nonlinear controller [J].
Harb, AM ;
Harb, BA .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :719-723
[16]   Nonlinear chaos control in a permanent magnet reluctance machine [J].
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1217-1224
[17]   An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos [J].
Hikihara, T ;
Kawagoshi, T .
PHYSICS LETTERS A, 1996, 211 (01) :29-36
[18]   STABILIZING HIGH-PERIOD ORBITS IN A CHAOTIC SYSTEM - THE DIODE RESONATOR [J].
HUNT, ER .
PHYSICAL REVIEW LETTERS, 1991, 67 (15) :1953-1955
[19]   Sliding mode control of chaos in the cubic Chua's circuit system [J].
Jang, MJ ;
Chen, CL ;
Chen, COK .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (06) :1437-1449
[20]   Mechanism of time-delayed feedback control [J].
Just, W ;
Bernard, T ;
Ostheimer, M ;
Reibold, E ;
Benner, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :203-206