Morphological Characterization of Mycobacterium tuberculosis in a MODS Culture for an Automatic Diagnostics through Pattern Recognition

被引:13
作者
Alva, Alicia [1 ]
Aquino, Fredy [1 ]
Gilman, Robert H. [2 ,3 ]
Olivares, Carlos [1 ]
Requena, David [1 ]
Gutierrez, Andres H. [1 ]
Caviedes, Luz [2 ]
Coronel, Jorge [2 ]
Larson, Sandra [4 ]
Sheen, Patricia [1 ,2 ]
Moore, David A. J. [2 ,5 ]
Zimic, Mirko [1 ,2 ]
机构
[1] Univ Peruana Cayetano Heredia, Lab Bioinformat & Biol Mol, Lab Invest & Desarrollo, Fac Ciencias & Filosofia, Lima, Peru
[2] Univ Peruana Cayetano Heredia, Lab TB, Lab Invest & Desarrollo, Fac Ciencias & Filosofia, Lima, Peru
[3] Johns Hopkins Univ, Sch Publ Hlth, Dept Int Hlth, Baltimore, MD USA
[4] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[5] Univ London Imperial Coll Sci Technol & Med, Wellcome Ctr Clin Trop Med, Dept Infect Dis & Immun, London, England
基金
英国惠康基金;
关键词
DETECT EARLY GROWTH; MICROSCOPIC-OBSERVATION; SPUTUM; IDENTIFICATION;
D O I
10.1371/journal.pone.0082809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS) assay uses visual recognition of cording patterns from Mycobacterium tuberculosis (MTB) to diagnose tuberculosis infection and drug susceptibility directly from a sputum sample in 7-10 days with a low cost. An important limitation that laboratories in the developing world face in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model identified MTB (96.9% sensitivity and 96.3% specificity) and was able to discriminate non-tuberculous mycobacteria with a high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii). The photo model identified TB-positive samples with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate treatment.
引用
收藏
页数:11
相关论文
共 26 条
[1]  
Abdel M., 2006, LANCET, V368, P2142
[2]  
[Anonymous], 1996, Digital image processing
[3]  
[Anonymous], 2009, Treatment of tuberculosis guidelines
[4]  
Attali D, 2009, MATH VIS, P109, DOI 10.1007/b106657_6
[5]   Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures [J].
Caviedes, L ;
Lee, TS ;
Gilman, RH ;
Sheen, P ;
Spellman, E ;
Lee, EH ;
Berg, DE ;
Montenegro-James, S .
JOURNAL OF CLINICAL MICROBIOLOGY, 2000, 38 (03) :1203-1208
[6]   Development of an automated MODS plate reader to detect early growth of Mycobacterium tuberculosis [J].
Comina, G. ;
Mendoza, D. ;
Velazco, A. ;
Coronel, J. ;
Sheen, P. ;
Gilman, R. H. ;
Moore, D. A. J. ;
Zimic, M. .
JOURNAL OF MICROSCOPY, 2011, 242 (03) :325-330
[7]  
COMSTOCK GW, 1982, AM REV RESPIR DIS, V125, P8
[8]   Multiresolution shape representation without border shifting [J].
Costa, LD ;
Estrozi, LF .
ELECTRONICS LETTERS, 1999, 35 (21) :1829-1830
[9]   Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models [J].
Forero, M. G. ;
Cristobal, G. ;
Desco, M. .
JOURNAL OF MICROSCOPY, 2006, 223 :120-132
[10]  
Jahne B., 2005, DIGITAL IMAGE PROCES