A Gauss-Bonnet formula for metrics with varying signature

被引:0
作者
Steller, M [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Inst Geometrie & Topol, D-70550 Stuttgart, Germany
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2006年 / 25卷 / 02期
关键词
Gauss-Bonnet formula; singular metric; pseudo-geodesic; generic metric;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gauss-Bonnet formula for compact orientable connected Riemannian or Lorentzian 2-manifolds is well-known. We investigate singular metrics on 2-manifolds with varying signature. Such metrics are necessarily degenerate at some points of M where most, of the usual definitions for geometric quantities break down. We prove that under some additional assumptions there is a Gauss-Bonnet formula for compact orientable connected 2-manifolds with a singular metric. Some examples are given.
引用
收藏
页码:143 / 162
页数:20
相关论文
共 10 条
[1]  
AVEZ A, 1962, CR HEBD ACAD SCI, V255, P2049
[2]  
BIRMAN GS, 1984, MICH MATH J, V31, P77
[3]   TRIGONOMETRY IN LORENTZIAN GEOMETRY [J].
BIRMAN, GS ;
NOMIZU, K .
AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (09) :543-&
[4]  
Chern S. S., 1963, An. Acad. Brasil. Ci., V35, P17
[5]  
Dzan J. J, 1984, GEOM DEDICATA, V15, P215
[6]  
GAUSS CF, 1921, ALLGEMEINE FLACHEN T
[8]   NEUTRAL GEOMETRY AND THE GAUSS-BONNET THEOREM FOR 2-DIMENSIONAL PSEUDO-RIEMANNIAN MANIFOLDS [J].
LAW, PR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1992, 22 (04) :1365-1383
[9]  
PELLETIER F., 1995, ANN FAC SCI TOULOUSE, V4, P87
[10]  
PELLETIER F, 1984, SINGULARITIES DYNAMI, P219