Effect of chirality, length and diameter of carbon nanotubes on the adsorption of 20 amino acids: a molecular dynamics simulation study

被引:36
作者
Az'hari, Sara [1 ]
Ghayeb, Yousef [1 ]
机构
[1] Isfahan Univ Technol, Dept Chem, Esfahan 8415683111, Iran
关键词
molecular dynamics simulation; carbon nanotubes; amino acids; adsorption; IN-VIVO; PEPTIDES; FUNCTIONALIZATION; TRANSPORTERS; FLUORESCENCE; CHOLESTEROL; BIOSENSOR;
D O I
10.1080/08927022.2013.812210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We carried out molecular dynamics simulations to study the adsorption of all the 20 amino acids (AAs; aromatic, polar and non-polar) on the surface of chiral, zigzag and armchair single-walled carbon nanotubes. The adsorption was occurring in all systems. In the aromatic AAs, the - stacking and the semi-hydrogen bond formation cause a strong interaction with the carbon nanotubes (CNTs). We also investigated the chirality, length and diameter dependencies on adsorption energies. We found that all AAs have more tendency to adsorption on the chiral and zigzag CNTs over the armchair. The results show that increasing both the diameter and the length causes the enhancement of the adsorption energy. But, the effect of the length is more than of the diameter. For example, the adsorption energy of Trp on the surface of CNT (4,1), with 2nm length, is 20.4kcal/mol. When the length of CNT becomes twice, the adsorption energy increases by 24 +/- 0.3%. But by doubling the diameter, the adsorption energy increased only by 9.8 +/- 0.25%.
引用
收藏
页码:392 / 398
页数:7
相关论文
共 46 条
[1]   LACK OF SUPERAROMATICITY IN CARBON NANOTUBES [J].
AIHARA, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (39) :9773-9776
[2]   In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages [J].
Barone, PW ;
Parker, RS ;
Strano, MS .
ANALYTICAL CHEMISTRY, 2005, 77 (23) :7556-7562
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery [J].
Bhirde, Ashwin A. ;
Patel, Vyomesh ;
Gavard, Julie ;
Zhang, Guofeng ;
Sousa, Alioscka A. ;
Masedunskas, Andrius ;
Leapman, Richard D. ;
Weigert, Roberto ;
Gutkind, J. Silvio ;
Rusling, James F. .
ACS NANO, 2009, 3 (02) :307-316
[5]   An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J].
Chen, RJ ;
Choi, HC ;
Bangsaruntip, S ;
Yenilmez, E ;
Tang, XW ;
Wang, Q ;
Chang, YL ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (05) :1563-1568
[6]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[7]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[8]   The immobilisation of proteins in carbon nanotubes [J].
Davis, JJ ;
Green, MLH ;
Hill, HAO ;
Leung, YC ;
Sadler, PJ ;
Sloan, J ;
Xavier, AV ;
Tsang, SC .
INORGANICA CHIMICA ACTA, 1998, 272 (1-2) :261-266
[9]  
Ding JW, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.073401
[10]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38