Relativistic Jacobi polynomials

被引:1
作者
He, MX [1 ]
Natalini, P
机构
[1] Nova SE Univ, Dept Math, Ft Lauderdale, FL 33314 USA
[2] Univ Rome La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
orthogonal polynomials; generalized hypergeometric-type polynomials; hypergeometric functions;
D O I
10.1080/10652469908819215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new polynomials set, of generalized hypergeometric type, is defined. These polynomials, called relativistic Jacobi polynomials (RJP) and denoted by {P-n(alpha,beta;N)(x)}(n=0)(infinity), represent an extension of the classical Jacobi orthogonal polynomials in the sense that they reduce to the latter in the non-relativistic limit (N --> infinity). Some basic properties of these polynomials, as well as for the RHP (see [6] and [7]) and the RLP (see [2] and [3]), are derived.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 7 条
  • [1] THE QUANTUM RELATIVISTIC HARMONIC-OSCILLATOR - GENERALIZED HERMITE-POLYNOMIALS
    ALDAYA, V
    BISQUERT, J
    NAVARROSALAS, J
    [J]. PHYSICS LETTERS A, 1991, 156 (7-8) : 381 - 385
  • [2] [Anonymous], 1988, SPECIAL FUNCTIONS MA, DOI DOI 10.1007/978-1-4757-1595-8
  • [3] NATALINI P, UNPUB SOME PROPERTIE
  • [4] NATALINI P, UNPUB RELATIVISTIC L
  • [5] SZEGO G, 1939, AM MATH SOC C PUB, V23
  • [6] ZARZO A, 1993, J MATH PHYS, V34
  • [7] ZARZO A, IN PRESS J PHYS A MA