Sub-optimal Hankel norm approximation problem: a frequency-domain approach

被引:5
作者
Iftime, OV
Sasane, AJ
机构
[1] Univ Groningen, Dept Math, Fac Math & Comp Sci, NL-9700 AV Groningen, Netherlands
[2] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
关键词
Hankel norm approximation problem; infinite-dimensional systems; J-spectral factorization; Wiener class of functions;
D O I
10.1016/j.sysconle.2003.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We obtain a simple solution for the sub-optimal Hankel norm approximation problem for the Wiener class of matrix-valued functions. The approach is via J-spectral factorization and frequency-domain techniques. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 19 条
[1]  
ADAMYAN VM, 1971, MAT SBORNIK, V86, P34
[2]   OPTIMAL HANKEL NORM MODEL REDUCTIONS AND WIENER-HOPF FACTORIZATION-I - THE CANONICAL CASE [J].
BALL, JA ;
RAN, ACM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (02) :362-382
[3]  
BALL JA, 1983, J OPERAT THEOR, V9, P107
[4]  
BALL JA, 1996, RECENT DEV OPERATOR, V87
[5]  
Clancey K., 1981, OPERATOR THEORY ADV, V3
[6]   THE NEHARI PROBLEM FOR THE PRITCHARD-SALAMON CLASS OF INFINITE-DIMENSIONAL LINEAR-SYSTEMS - A DIRECT APPROACH [J].
CURTAIN, R ;
ZWART, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 18 (02) :130-153
[7]   The Nehari problem for infinite-dimensional linear systems of parabolic type [J].
Curtain, RF ;
Ichikawa, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (01) :29-45
[8]   The Nehari problem for nonexponentially stable systems [J].
Curtain, RF ;
Oostveen, JC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 31 (03) :307-320
[9]  
Curtain RF, 1995, An Introduction to Infinite-Dimensional Linear Systems Theory
[10]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193