Crowdsourcing scoring of immunohistochemistry images: Evaluating Performance of the Crowd and an Automated Computational Method

被引:24
作者
Irshad, Humayun [1 ]
Oh, Eun-Yeong [2 ]
Schmolze, Daniel [3 ]
Quintana, Liza M. [1 ]
Collins, Laura [1 ]
Tamimi, Rulla M. [4 ,5 ]
Beck, Andrew H. [1 ]
机构
[1] Harvard Med Sch, Dept Pathol, Beth Israel Deaconess Med Ctr, Boston, MA 02115 USA
[2] Kaiser Permanente, Mid Atlantic Grp, Rockville, MD USA
[3] City Hope Natl Med Ctr, 1500 E Duarte Rd, Duarte, CA 91010 USA
[4] Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Channing Div Network Med, 75 Francis St, Boston, MA 02115 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
CANCER TISSUE MICROARRAYS; EXPERTS; KI-67;
D O I
10.1038/srep43286
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, imagelabeling and nuclei-labeling, and compare their performance with automated methods. Crowdsourcingderived scores obtained greater concordance with the pathologist interpretations for both imagelabeling and nuclei-labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,338 TMA images from 1,853 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.
引用
收藏
页数:10
相关论文
共 22 条
[1]   Astronomical algorithms for automated analysis of tissue protein expression in breast cancer [J].
Ali, H. R. ;
Irwin, M. ;
Morris, L. ;
Dawson, S-J ;
Blows, F. M. ;
Provenzano, E. ;
Mahler-Araujo, B. ;
Pharoah, P. D. ;
Walton, N. A. ;
Brenton, J. D. ;
Caldas, C. .
BRITISH JOURNAL OF CANCER, 2013, 108 (03) :602-612
[2]   Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears [J].
Angel Luengo-Oroz, Miguel ;
Arranz, Asier ;
Frean, John .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2012, 14 (06) :207-219
[3]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[4]   Assessment of Automated Image Analysis of Breast Cancer Tissue Microarrays for Epidemiologic Studies [J].
Bolton, Kelly L. ;
Garcia-Closas, Montserrat ;
Pfeiffer, Ruth M. ;
Duggan, Maire A. ;
Howat, William J. ;
Hewitt, Stephen M. ;
Yang, Xiaohong R. ;
Cornelison, Robert ;
Anzick, Sarah L. ;
Meltzer, Paul ;
Davis, Sean ;
Lenz, Petra ;
Figueroa, Jonine D. ;
Pharoah, Paul D. P. ;
Sherman, Mark E. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2010, 19 (04) :992-999
[5]   Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer [J].
Candido dos Reis, Francisco J. ;
Lynn, Stuart ;
Ali, H. Raza ;
Eccles, Diana ;
Hanby, Andrew ;
Provenzano, Elena ;
Caldas, Carlos ;
Howat, William J. ;
McDuffus, Leigh-Anne ;
Liu, Bin ;
Daley, Frances ;
Coulson, Penny ;
Vyas, Rupesh J. ;
Harris, Leslie M. ;
Owens, Joanna M. ;
Carton, Amy F. M. ;
McQuillan, Janette P. ;
Paterson, Andy M. ;
Hirji, Zohra ;
Christie, Sarah K. ;
Holmes, Amber R. ;
Schmidt, Marjanka K. ;
Garcia-Closas, Montserrat ;
Easton, Douglas F. ;
Bolla, Manjeet K. ;
Wang, Qin ;
Benitez, Javier ;
Milne, Roger L. ;
Mannermaa, Arto ;
Couch, Fergus ;
Devilee, Peter ;
Tollenaar, Robert A. E. M. ;
Seynaeve, Caroline ;
Cox, Angela ;
Cross, Simon S. ;
Blows, Fiona M. ;
Sanders, Joyce ;
de Groot, Renate ;
Figueroa, Jonine ;
Sherman, Mark ;
Hooning, Maartje ;
Brenner, Hermann ;
Holleczek, Bernd ;
Stegmaier, Christa ;
Lintott, Chris ;
Pharoah, Paul D. P. .
EBIOMEDICINE, 2015, 2 (07) :681-689
[6]   The Nurses' Health Study: Lifestyle and health among women [J].
Colditz, GA ;
Hankinson, SE .
NATURE REVIEWS CANCER, 2005, 5 (05) :388-396
[7]   Comparison of estrogen receptor results from pathology reports with results from central laboratory testing [J].
Collins, Laura C. ;
Marotti, Jonathan D. ;
Baer, Heather J. ;
Tamimi, Rulla M. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2008, 100 (03) :218-221
[8]   Preliminary results from a crowdsourcing experiment in immunohistochemistry [J].
Della Mea, Vincenzo ;
Maddalena, Eddy ;
Mizzaro, Stefano ;
Machin, Piernicola ;
Beltrami, Carlo A. .
DIAGNOSTIC PATHOLOGY, 2014, 9
[9]  
Giltnane JM, 2004, NAT CLIN PRACT ONCOL, V1, P104, DOI 10.1038/ncponc0046
[10]   Comparison of the effect of different techniques for measurement of Ki67 proliferation on reproducibility and prognosis prediction accuracy in breast cancer [J].
Gudlaugsson, Einar ;
Skaland, Ivar ;
Janssen, Emiel A. M. ;
Smaaland, Rune ;
Shao, Zhiming ;
Malpica, Anais ;
Voorhorst, Feja ;
Baak, Jan P. A. .
HISTOPATHOLOGY, 2012, 61 (06) :1134-1144