Deep Reinforcement Learning Based Volt-VAR Optimization in Smart Distribution Systems

被引:144
作者
Zhang, Ying [1 ]
Wang, Xinan [1 ]
Wang, Jianhui [1 ]
Zhang, Yingchen [2 ]
机构
[1] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75275 USA
[2] Power Syst Engn Ctr, Natl Renewable Energy Lab, Golden, CO 60439 USA
关键词
Voltage control; Inverters; Load modeling; Computational modeling; Optimization; Machine learning; Adaptation models; Volt-VAR optimization; deep reinforcement learning; artificial intelligence; voltage regulation; unbalanced distribution systems; smart inverter; DISTRIBUTION NETWORKS; GENERATION; MANAGEMENT; ALGORITHM;
D O I
10.1109/TSG.2020.3010130
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a model-free volt-VAR optimization (VVO) algorithm via multi-agent deep reinforcement learning (DRL) in unbalanced distribution systems. This method is novel since we cast the VVO problem in distribution networks to an intelligent deep Q-network (DQN) framework, which avoids solving a specific optimization model directly when facing time-varying operating conditions in the systems. We consider statuses/ratios of switchable capacitors, voltage regulators, and smart inverters installed at distributed generators as the action variables of the agents. A delicately designed reward function guides these agents to interact with the distribution system, in the direction of reinforcing voltage regulation and power loss reduction simultaneously. The forward-backward sweep method for radial three-phase distribution systems provides accurate power flow results within a few iterations to the DRL environment. The proposed method realizes the dual goals for VVO. We test this algorithm on the unbalanced IEEE 13-bus and 123-bus systems. Numerical simulations validate the excellent performance of this method in voltage regulation and power loss reduction.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条