Detection of Penicillin G Produced by Penicillium chrysogenum with Raman Microspectroscopy and Multivariate Curve Resolution-Alternating Least-Squares Methods

被引:21
作者
Horii, Shumpei [1 ,2 ]
Ando, Masahiro [3 ,4 ,6 ]
Samuel, Ashok Zachariah [3 ,6 ]
Take, Akira [3 ,5 ,6 ]
Nakashima, Takuji [5 ]
Matsumoto, Atsuko [5 ]
Takahashi, Yoko [5 ]
Takeyama, Haruko [1 ,3 ,6 ,7 ,8 ]
机构
[1] Waseda Univ, Dept Adv Sci Engn, Tokyo 1698555, Japan
[2] Waseda Univ, Computat Bio Big Data Open Innovat Lab, AIST, Tokyo 1698555, Japan
[3] Waseda Univ, Res Org Nano & Life Innovat, Tokyo 1620041, Japan
[4] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[5] Kitasato Univ, Kitasato Inst Life Sci, Tokyo 1088641, Japan
[6] Waseda Univ, Res Org Nano & Life Innovat, Tokyo 1698555, Japan
[7] Waseda Univ, Dept Life Sci & Med Biosci, Tokyo 1698555, Japan
[8] Waseda Univ, Consolidated Res Inst Adv Sci & Med Care, Tokyo 1698555, Japan
来源
JOURNAL OF NATURAL PRODUCTS | 2020年 / 83卷 / 11期
关键词
D O I
10.1021/acs.jnatprod.0c00214
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Raman microspectroscopy is a minimally invasive technique that can identify molecules without labeling. In this study, we demonstrate the detection of penicillin G inside Penicillium chrysogenum KF425 fungal cells. Raman spectra acquired from the fungal cells had highly overlapped spectroscopic signatures and hence were analyzed with multivariate curve resolution by alternating least-squares (MCR-ALS) to extract the spectra of individual molecular constituents. In addition to detecting spatial distribution of multiple constituents such as proteins and lipids inside the fungal body, we could also observe the subcellular localization of penicillin G. This methodology has the potential to be employed in screening the production of bioactive compounds by microorganisms.
引用
收藏
页码:3223 / 3229
页数:7
相关论文
共 41 条
  • [1] Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis
    Almeida, Mariana R.
    Alves, Rafael S.
    Nascimbem, Laura B. L. R.
    Stephani, Rodrigo
    Poppi, Ronei J.
    de Oliveira, Luiz Fernando C.
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (07) : 2693 - 2701
  • [2] Andleeb Saiqa, 2018, Infectious Disorders - Drug Targets, V18, P164, DOI 10.2174/1871526517666170728130836
  • [3] Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra
    Ando, Masahiro
    Hamaguchi, Hiro-o
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)
  • [4] Bioactive microbial metabolites -: A personal view
    Bérdy, J
    [J]. JOURNAL OF ANTIBIOTICS, 2005, 58 (01) : 1 - 26
  • [5] Bodelón G, 2016, NAT MATER, V15, P1203, DOI [10.1038/nmat4720, 10.1038/NMAT4720]
  • [6] Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis
    Chen, Po-Hsiung
    Shimada, Rintaro
    Yabumoto, Sohshi
    Okajima, Hajime
    Ando, Masahiro
    Chang, Chiou-Tzu
    Lee, Li-Tzu
    Wong, Yong-Kie
    Chiou, Arthur
    Hamaguchi, Hiro-O
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [7] Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy
    Clarke, SJ
    Littleford, RE
    Smith, WE
    Goodacre, R
    [J]. ANALYST, 2005, 130 (07) : 1019 - 1026
  • [8] Raman spectroscopy of lipids: a review
    Czamara, K.
    Majzner, K.
    Pacia, M. Z.
    Kochan, K.
    Kaczor, A.
    Baranska, M.
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (01) : 4 - 20
  • [9] Drug discovery: A historical perspective
    Drews, J
    [J]. SCIENCE, 2000, 287 (5460) : 1960 - 1964
  • [10] Raman spectra of amino acids and related compounds I. The ionization of the carboxyl group
    Edsall, JT
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1936, 4 (01) : 1 - 8