Using evolutionary algorithms to suggest variable transformations in linear model lack-of-fit situations

被引:3
作者
Castillo, FA [1 ]
Sweeney, JD [1 ]
Zirk, WE [1 ]
机构
[1] Dow Chem Co USA, Freeport, TX 77541 USA
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1330906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When significant model lack of fit (LOF) is present in a second-order linear regression model, it is often difficult to propose the appropriate parameter transformation that will make model LOF insignificant. This paper presents the potential of genetic programming (GP) symbolic regression for reducing or eliminating significant second-order linear model LOF. A case study in an industrial setting at The Dow Chemical Company will be presented to illustrate this methodology.
引用
收藏
页码:556 / 560
页数:5
相关论文
共 7 条
[1]  
Box G, 1987, EMPIRICAL MODEL BUIL
[2]  
Box G.E.P., 1960, Technometrics, V2, P455, DOI [10.1080/00401706.1960.10489912, DOI 10.1080/00401706.1960.10489912]
[3]  
BOX I, 1978, STAT EXPT INTRO DESI
[4]  
Koza J.R., 1992, GENETIC PROGRAMMING
[5]  
Montgomery D. C., 1992, INTRO LINEAR REGRESS
[6]  
Montgomery D.C., 1999, Design and analysis of experiment
[7]  
[No title captured]