PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries

被引:24
|
作者
He, Lei [1 ,2 ]
Liang, Wei-Hua [1 ]
Cao, Jian-Hua [1 ]
Wu, Da-Yong [1 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 04期
关键词
composite solid electrolyte; LATP; polyimide; high-temperature resistance; fl ame retardant; interface stability; GEL POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; DENDRITE FORMATION; LIQUID; SEPARATORS; FIREPROOF;
D O I
10.1021/acsaem.2c00745
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although lithium metal is extensively used as an anode material for next-generation secondary batteries, the lithium metal reacts with the commonly used organic electrolytes, forming lithium dendrites, resulting in short-circuiting of batteries, which is a safety hazard. Solid-state electrolytes are a feasible solution to overcome these limitations. We prepared a PI-PEO-LATP composite solid electrolyte by compounding poly(ethylene oxide) (PEO) and Li1.4Al0.4Ti1.6(PO4)3 (LATP) with an electrospun polyimide (PI) nanofiber membrane using a solution-casting method. The best electrochemical and battery performance was obtained when the ratio of LATP to PEO was 15%. LATP reduces the crystallinity of PEO and increases its ionic conductivity. The nanofibrous membrane exhibited enhanced thermal stability and self-extinguishing performance. The lithium symmetric battery assembled with the PI-PEO-LATP composite solid electrolyte functioned stably for 1000 h at a current density of 0.5 mAmiddotcm-2. The solid electrolyte showed good compatibility with a lithium metal anode and could inhibit the growth of lithium dendrites. When using the LiNi0.8Co0.1Mn0.1O2 positive electrode and lithium metal negative electrode, the assembled coin cell maintained a discharge capacity of 170.7 mAhmiddotg-1 after 100 cycles at 0.2 C, with a capacity retention rate of 95% and Coulombic efficiency of approximately 100%.
引用
收藏
页码:5277 / 5286
页数:10
相关论文
共 50 条
  • [1] Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries
    Li, Chenghan
    Zhou, Shi
    Dai, Lijie
    Zhou, Xuanyi
    Zhang, Biao
    Chen, Liwen
    Zeng, Tao
    Liu, Yating
    Tang, Yongfu
    Jiang, Jie
    Huang, Jianyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24661 - 24669
  • [2] Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte
    Yan, Cheng-Lin
    RARE METALS, 2020, 39 (05) : 458 - 459
  • [3] Lithium difluorophosphate–modified PEO-based solid-state electrolyte for high-voltage lithium batteries
    Jiaxu Tan
    Xinhai Li
    Qihou Li
    Zhixing Wang
    Huajun Guo
    Guochun Yan
    Jiexi Wang
    Guangchao Li
    Ionics, 2022, 28 : 3233 - 3241
  • [4] Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte
    Cheng-Lin Yan
    Rare Metals, 2020, 39 : 458 - 459
  • [5] Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte
    Cheng-Lin Yan
    Rare Metals, 2020, 39 (05) : 458 - 459
  • [6] Safety perceptions of solid-state lithium metal batteries
    Wang, Li
    Chen, Zonghai
    Liu, Yan
    Li, Yuan
    Zhang, Hao
    He, Xiangming
    ETRANSPORTATION, 2023, 16
  • [7] Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries
    Yin, Jian-Hong
    Zhu, Hua
    Yu, Shi-Jin
    Dong, Yue-Bing
    Wei, Quan-Ya
    Xu, Guo-Qian
    Xiong, Yan
    Qian, Yan
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (20)
  • [8] High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries
    Hu, Qilin
    Sun, Zhetao
    Nie, Lu
    Chen, Shaojie
    Yu, Jiameng
    Liu, Wei
    MATERIALS TODAY ENERGY, 2022, 27
  • [9] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Thamayanthi Panneerselvam
    Arunkumar Rajamani
    Narayanasamy Janani
    Ramaswamy Murugan
    Sivaraman Sivaprakasam
    Ionics, 2023, 29 : 1395 - 1406
  • [10] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Panneerselvam, Thamayanthi
    Rajamani, Arunkumar
    Janani, Narayanasamy
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    IONICS, 2023, 29 (04) : 1395 - 1406