PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries

被引:24
作者
He, Lei [1 ,2 ]
Liang, Wei-Hua [1 ]
Cao, Jian-Hua [1 ]
Wu, Da-Yong [1 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 04期
关键词
composite solid electrolyte; LATP; polyimide; high-temperature resistance; fl ame retardant; interface stability; GEL POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; DENDRITE FORMATION; LIQUID; SEPARATORS; FIREPROOF;
D O I
10.1021/acsaem.2c00745
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although lithium metal is extensively used as an anode material for next-generation secondary batteries, the lithium metal reacts with the commonly used organic electrolytes, forming lithium dendrites, resulting in short-circuiting of batteries, which is a safety hazard. Solid-state electrolytes are a feasible solution to overcome these limitations. We prepared a PI-PEO-LATP composite solid electrolyte by compounding poly(ethylene oxide) (PEO) and Li1.4Al0.4Ti1.6(PO4)3 (LATP) with an electrospun polyimide (PI) nanofiber membrane using a solution-casting method. The best electrochemical and battery performance was obtained when the ratio of LATP to PEO was 15%. LATP reduces the crystallinity of PEO and increases its ionic conductivity. The nanofibrous membrane exhibited enhanced thermal stability and self-extinguishing performance. The lithium symmetric battery assembled with the PI-PEO-LATP composite solid electrolyte functioned stably for 1000 h at a current density of 0.5 mAmiddotcm-2. The solid electrolyte showed good compatibility with a lithium metal anode and could inhibit the growth of lithium dendrites. When using the LiNi0.8Co0.1Mn0.1O2 positive electrode and lithium metal negative electrode, the assembled coin cell maintained a discharge capacity of 170.7 mAhmiddotg-1 after 100 cycles at 0.2 C, with a capacity retention rate of 95% and Coulombic efficiency of approximately 100%.
引用
收藏
页码:5277 / 5286
页数:10
相关论文
共 50 条
  • [1] A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries
    Duan, Tong
    Cheng, Hongwei
    Liu, Yanbo
    Sun, Qiangchao
    Nie, Wei
    Lu, Xionggang
    Dong, Panpan
    Song, Min-Kyu
    ENERGY STORAGE MATERIALS, 2024, 65
  • [2] Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries
    Yin, Jian-Hong
    Zhu, Hua
    Yu, Shi-Jin
    Dong, Yue-Bing
    Wei, Quan-Ya
    Xu, Guo-Qian
    Xiong, Yan
    Qian, Yan
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (20)
  • [3] Incombustible Polymer Electrolyte Boosting Safety of Solid-State Lithium Batteries: A Review
    Han, Longfei
    Wang, Li
    Chen, Zonghai
    Kan, Yongchun
    Hu, Yuan
    Zhang, Hao
    He, Xiangming
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (32)
  • [4] High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries
    Hu, Qilin
    Sun, Zhetao
    Nie, Lu
    Chen, Shaojie
    Yu, Jiameng
    Liu, Wei
    MATERIALS TODAY ENERGY, 2022, 27
  • [5] Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery
    Wang, Chen
    Wang, Tao
    Wang, Longlong
    Hu, Zhenglin
    Cui, Zili
    Li, Jiedong
    Dong, Shanmu
    Zhou, Xinhong
    Cui, Guanglei
    ADVANCED SCIENCE, 2019, 6 (22)
  • [6] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [7] Polyoxyethylene (PEO)|PEO-Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries
    Liu, Ke
    Zhang, Ruihan
    Sun, Jing
    Wu, Maochun
    Zhao, Tianshou
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (50) : 46930 - 46937
  • [8] Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries
    Liu, Yongyu
    Han, Longfei
    Liao, Can
    Yu, Heng
    Kan, Yongchun
    Hu, Yuan
    CHEMICAL ENGINEERING JOURNAL, 2023, 468
  • [9] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] An Advanced Gel Polymer Electrolyte for Solid-State Lithium Metal Batteries
    Xian, Chunxiang
    Zhang, Shengzhao
    Liu, Ping
    Huang, Lei
    He, Xinping
    Shen, Shenghui
    Cao, Feng
    Liang, Xinqi
    Wang, Chen
    Wan, Wangjun
    Zhang, Yongqi
    Liu, Xin
    Zhong, Yu
    Xia, Yang
    Chen, Minghua
    Zhang, Wenkui
    Xia, Xinhui
    Tu, Jiangping
    SMALL, 2024, 20 (15)