Reciprocal Perspective for Improved Protein-Protein Interaction Prediction

被引:19
作者
Dick, Kevin [1 ]
Green, James R. [1 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
加拿大自然科学与工程研究理事会;
关键词
OPERATING CHARACTERISTIC CURVE; IDENTIFICATION; AREA;
D O I
10.1038/s41598-018-30044-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
All protein-protein interaction (PPI) predictors require the determination of an operational decision threshold when differentiating positive PPIs from negatives. Historically, a single global threshold, typically optimized via cross-validation testing, is applied to all protein pairs. However, we here use data visualization techniques to show that no single decision threshold is suitable for all protein pairs, given the inherent diversity of protein interaction profiles. The recent development of high throughput PPI predictors has enabled the comprehensive scoring of all possible protein-protein pairs. This, in turn, has given rise to context, enabling us now to evaluate a PPI within the context of all possible predictions. Leveraging this context, we introduce a novel modeling framework called Reciprocal Perspective (RP), which estimates a localized threshold on a per-protein basis using several rank order metrics. By considering a putative PPI from the perspective of each of the proteins within the pair, RP rescores the predicted PPI and applies a cascaded Random Forest classifier leading to improvements in recall and precision. We here validate RP using two state-of-the-art PPI predictors, the Protein-protein Interaction Prediction Engine and the Scoring PRotein INTeractions methods, over five organisms: Homo sapiens, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, and Mus musculus. Results demonstrate the application of a post hoc RP rescoring layer significantly improves classification (p < 0.001) in all cases over all organisms and this new rescoring approach can apply to any PPI prediction method.
引用
收藏
页数:12
相关论文
共 50 条
[31]   New approaches for protein-protein interaction study [J].
Beganton, Benoit ;
Coyaud, Etienne ;
Mange, Alain ;
Solassol, Jerome .
M S-MEDECINE SCIENCES, 2019, 35 (03) :223-231
[32]   Deconvolution of Targeted Protein-Protein Interaction Maps [J].
Stukalov, Alexey ;
Superti-Furga, Giulio ;
Colinge, Jacques .
JOURNAL OF PROTEOME RESEARCH, 2012, 11 (08) :4102-4109
[33]   A protein-protein interaction dictates Borrelial infectivity [J].
Thakur, Meghna ;
Sharma, Kavita ;
Chao, Kinlin ;
Smith, Alexis A. ;
Herzberg, Osnat ;
Pal, Utpal .
SCIENTIFIC REPORTS, 2017, 7
[34]   PPInS: a repository of protein-protein interaction sitesbase [J].
Kumar, Vicky ;
Mahato, Suchismita ;
Munshi, Anjana ;
Kulharia, Mahesh .
SCIENTIFIC REPORTS, 2018, 8
[35]   Plant Protein-Protein Interaction Network and Interactome [J].
Zhang, Yixiang ;
Gao, Peng ;
Yuan, Joshua S. .
CURRENT GENOMICS, 2010, 11 (01) :40-46
[36]   Protein-protein interaction networks: the puzzling riches [J].
Wodak, Shoshana J. ;
Vlasblom, James ;
Turinsky, Andrei L. ;
Pu, Shuye .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2013, 23 (06) :941-953
[37]   Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier [J].
Wei, Leyi ;
Xing, Pengwei ;
Zeng, Jiancang ;
Chen, JinXiu ;
Su, Ran ;
Guo, Fei .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2017, 83 :67-74
[38]   Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening [J].
Lin, Ti-Yu ;
Li, Bor-Ran ;
Tsai, Sheng-Ta ;
Chen, Chien-Wei ;
Chen, Chung-Hsuan ;
Chen, Yit-Tsong ;
Pan, Chien-Yuan .
LAB ON A CHIP, 2013, 13 (04) :676-684
[39]   Predicting Protein Phenotypes Based on Protein-Protein Interaction Network [J].
Hu, Lele ;
Huang, Tao ;
Liu, Xiao-Jun ;
Cai, Yu-Dong .
PLOS ONE, 2011, 6 (03)
[40]   Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network [J].
Cao, HuanHuan ;
Zhang, YuHang ;
Zhao, Jia ;
Zhu, Liucun ;
Wang, Yi ;
Li, JiaRui ;
Feng, Yuan-Ming ;
Zhang, Ning .
COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2017, 20 (07) :638-646