Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process

被引:90
作者
Induja, I. J. [1 ]
Sebastian, M. T. [1 ,2 ]
机构
[1] Natl Inst Interdisciplinary Sci Technol, Mat Sci & Technol Div, Thiruvananthapuram 695019, Kerala, India
[2] Univ Oulu, Fac Informat Technol & Elect Engn, Microelect Res Unit, POB 4500, FI-90014 Oulu, Finland
关键词
Microwave ceramics; Sillimanite; Dielectric properties; Ultra low temperature sintering; Silicate; ROOM-TEMPERATURE FABRICATION; CRYSTAL-STRUCTURE; MULLITE; AL2SIO5;
D O I
10.1016/j.jeurceramsoc.2017.01.007
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The sillimanite (Al2SiO5) mineral has been sintered by conventional ceramic route and by cold sintering methods. The mineral has very poor sinterability and transformed to mullite on sintering above 1525 degrees C. The dielectric properties of sillimanite mineral (Al2SiO5) are investigated at radio and microwave frequency ranges. The mineral sintered at 1525 degrees C has low epsilon(r) of 4.71 and tan delta of 0.002 at 1 MHz and at microwave frequency epsilon(r) = 4.43, Q(u) x f = 41,800 GHz with tau(f) = -17 ppm/degrees C. The sintering aid used for cold sintering Al2SiO5 is sodium chloride (NaCl). The Al2SiO5-NaCl composite was cold sintered at 120 degrees C. XRD analysis of the composite revealed that there is no additional phase apart from Al2SiO5 and NaCl. The densification of the Al2SiO5-NaCl composite was confirmed by using microstructure analysis. The Al2SiO5-NaCl composite has epsilon(r) of 5.37 and tan delta of 0.005 at 1 MHz whereas at microwave frequency it has epsilon(r) = 4.52, Q(u) x f= 22,350 GHz with tau(f) = 24 ppm/degrees C. The cold sintered NaCl has epsilon(r) = 5.2, Q(u) x f = 12,000 GHz with tau(f) = -36 ppm/degrees C. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2143 / 2147
页数:5
相关论文
共 30 条
  • [1] [Anonymous], 2016, J AM CERAM SOC
  • [2] Density functional calculations of the electronic structure and optical properties of aluminosilicate polymorphs (Al2SiO5)
    Aryal, Sitaram
    Rulis, Paul
    Ching, W. Y.
    [J]. AMERICAN MINERALOGIST, 2008, 93 (01) : 114 - 123
  • [3] Utilizing the Cold Sintering Process for Flexible-Printable Electroceramic Device Fabrication
    Baker, Amanda
    Guo, Hanzheng
    Guo, Jing
    Randall, Clive
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (10) : 3202 - 3204
  • [4] Deer W.A., 1997, Rock-forming minerals: Disilicates and Ring Silicates, V1B
  • [5] Funahashi S., 2016, J AM CERAM SOC
  • [6] Cold Sintering Process: A Novel Technique for Low-Temperature Ceramic Processing of Ferroelectrics
    Guo, Hanzheng
    Baker, Amanda
    Guo, Jing
    Randall, Clive A.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (11) : 3489 - 3507
  • [7] Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering
    Guo, Hanzheng
    Guo, Jing
    Baker, Amanda
    Randall, Clive A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) : 20909 - 20915
  • [8] Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials
    Guo, Jing
    Berbano, Seth S.
    Guo, Hanzheng
    Baker, Amanda L.
    Lanagan, Michael T.
    Randall, Clive A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (39) : 7115 - 7121
  • [9] Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics
    Guo, Jing
    Guo, Hanzheng
    Baker, Amanda L.
    Lanagan, Michael T.
    Kupp, Elizabeth R.
    Messing, Gary L.
    Randall, Clive A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (38) : 11457 - 11461
  • [10] Hirth J.P., 2010, DISLOCATIONS SOLIDS