Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification

被引:67
作者
McDermott, L. N. [1 ]
Wendling, M. [1 ]
van Asselen, B. [1 ]
Stroom, J. [1 ]
Sonke, J. -J. [1 ]
van Herk, M. [1 ]
Mijnheer, B. J. [1 ]
机构
[1] Antoni Van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Radiat Oncol, Amsterdam, Netherlands
关键词
D O I
10.1118/1.2230810
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The aim of this study was to demonstrate how dosimetry with an amorphous silicon electronic portal imaging device (a-Si EPID) replaced film and ionization chamber measurements for routine pre-treatment dosimetry in our clinic. Furthermore, we described how EPID dosimetry was used to solve a clinical problem. IMRT prostate plans were delivered to a homogeneous slab phantom. EPID transit images were acquired for each segment. A previously developed in-house back-projection algorithm was used to reconstruct the dose distribution in the phantom mid-plane (intersecting the isocenter). Segment dose images were summed to obtain an EPID mid-plane dose image for each field. Fields were compared using profiles and in two dimensions with the gamma evaluation (criteria: 3%/3 mm). To quantify results, the average gamma (gamma(avg)), maximum gamma (gamma(max)), and the percentage of points with gamma < 1 (P-gamma < 1) were calculated within the 20% isodose line of each field. For 10 patient plans, all fields were measured with EPID and film at gantry set to 0 degrees. The film was located in the phantom coronal mid-plane (10 cm depth), and compared with the back-projected EPID mid-plane absolute dose. EPID and film measurements agreed well for all 50 fields, with (gamma(avg)) =0.16, <gamma(max)>=1.00, and < P-gamma < 1 >=100%. Based on these results, film measurements were discontinued for verification of prostate IMRT plans. For 20 patient plans, the dose distribution was re-calculated with the phantom CT scan and delivered to the phantom with the original gantry angles. The planned isocenter dose (plan(iso)) was verified with the EPID (EPIDiso) and an ionization chamber (ICiso). The average ratio, < EPIDiso/ICiso >, was 1.00 (0.01 SD). Both measurements were systematically lower than planned, with < EPIDiso/plan(iso)> and < ICiso/plan(iso)> = 0.99 (0.01 SD). EPID mid-plane dose images for each field were also compared with the corresponding plane derived from the three dimensional (3D) dose grid calculated with the phantom CT scan. Comparisons of 100 fields yielded <gamma(avg)>=0.39, gamma(max)=2.52, and < P-gamma < 1 >=98.7%. Seven plans revealed under-dosage in individual fields ranging from 5% to 16%, occurring at small regions of overlapping segments or along the junction of abutting segments (tongue-and-groove side). Test fields were designed to simulate errors and gave similar results. The agreement was improved after adjusting an incorrectly set tongue-and-groove width parameter in the treatment planning system (TPS), reducing <gamma(max)> from 2.19 to 0.80 for the test field. Mid-plane dose distributions determined with the EPID were consistent with film measurements in a slab phantom for all IMRT fields. Isocenter doses of the total plan measured with an EPID and an ionization chamber also agreed. The EPID can therefore replace these dosimetry devices for field-by-field and isocenter IMRT pre-treatment verification. Systematic errors were detected using EPID dosimetry, resulting in the adjustment of a TPS parameter and alteration of two clinical patient plans. One set of EPID measurements (i.e. , one open and transit image acquired for each segment of the plan) is sufficient to check each IMRT lan field-by-field and at the isocenter, making it a useful, efficient, and accurate dosimetric tool. (c) 2006 American Association of Physicists in Medicine.
引用
收藏
页码:3921 / 3930
页数:10
相关论文
共 40 条
[1]   First clinical tests using a liquid-filled electronic portal imaging device and a convolution model for the verification of the midplane dose [J].
Boellaard, R ;
van Herk, M ;
Uiterwaal, H ;
Mijnheer, B .
RADIOTHERAPY AND ONCOLOGY, 1998, 47 (03) :303-312
[2]   New method to obtain the midplane dose using portal in vivo dosimetry [J].
Boellaard, R ;
Essers, M ;
van Herk, M ;
Mijnheer, BJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (02) :465-474
[3]   Verification of IMRT fields by film dosimetry [J].
Bucciolini, M ;
Buonamici, FB ;
Casati, M .
MEDICAL PHYSICS, 2004, 31 (01) :161-168
[4]   Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate [J].
Burman, C ;
Chui, CS ;
Kutcher, G ;
Leibel, S ;
Zelefsky, M ;
LoSasso, T ;
Spirou, S ;
Wu, QW ;
Yang, J ;
Stein, J ;
Mohan, R ;
Fuks, Z ;
Ling, CC .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 39 (04) :863-873
[5]  
Chang J, 2003, J Appl Clin Med Phys, V4, P287, DOI 10.1120/1.1615071
[6]   Effect of processing time delay on the dose response of Kodak EDR2 film [J].
Childress, NL ;
Rosen, II .
MEDICAL PHYSICS, 2004, 31 (08) :2284-2288
[7]   Detection of IMRT delivery errors using a quantitative 2D dosimetric verification system [J].
Childress, NL ;
Bloch, C ;
White, RA ;
Salehpour, M ;
Rosen, II .
MEDICAL PHYSICS, 2005, 32 (01) :153-162
[8]   A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation [J].
Depuydt, T ;
Van Esch, A ;
Huyskens, DP .
RADIOTHERAPY AND ONCOLOGY, 2002, 62 (03) :309-319
[9]   Relative dosimetry using active matrix flat-panel imager (AMFPI) technology [J].
El-Mohri, Y ;
Antonuk, LE ;
Yorkston, J ;
Jee, KW ;
Maolinbay, M ;
Lam, KL ;
Siewerdsen, JH .
MEDICAL PHYSICS, 1999, 26 (08) :1530-1541
[10]   Dosimetry of therapeutic photon beams using an extended dose range film [J].
Esthappan, J ;
Mutic, S ;
Harms, WB ;
Dempsey, JF ;
Low, DA .
MEDICAL PHYSICS, 2002, 29 (10) :2438-2445