Towards analog quantum simulations of lattice gauge theories with trapped ions

被引:99
作者
Davoudi, Zohreh [1 ,2 ,3 ]
Hafezi, Mohammad [2 ,4 ,5 ,6 ]
Monroe, Christopher [2 ,4 ,7 ]
Pagano, Guido [2 ,4 ,7 ,8 ]
Seif, Alireza [2 ,4 ]
Shaw, Andrew [1 ,2 ]
机构
[1] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] RIKEN, Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan
[4] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[6] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[7] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[8] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
EDGE STATES; SYSTEMS; ENTANGLEMENT; PROPAGATION; DYNAMICS; PHYSICS; ATOMS; GAS;
D O I
10.1103/PhysRevResearch.2.023015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems described by gauge theories. An exciting possibility that has been explored in recent years is the use of highly controlled quantum systems to simulate, in an analog fashion, properties of a target system whose dynamics are difficult to compute. Engineered atom-laser interactions in a linear crystal of trapped ions offer a wide range of possibilities for quantum simulations of complex physical systems. Here we devise practical proposals for analog simulation of simple lattice gauge theories whose dynamics can be mapped onto spin-spin interactions in any dimension. These include 1+1D quantum electrodynamics, 2+1D Abelian Chern-Simons theory coupled to fermions, and 2+1D pure Z(2) gauge theory. The scheme proposed, along with the optimization protocol applied, will have applications beyond the examples presented in this work, and will enable scalable analog quantum simulation of Heisenberg spin models in any number of dimensions and with arbitrary interaction strengths.
引用
收藏
页数:24
相关论文
共 116 条
[1]   Artificial gauge fields in materials and engineered systems [J].
Aidelsburger, Monika ;
Nascimbene, Sylvain ;
Goldman, Nathan .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :394-432
[2]   FLAG Review 2019 [J].
Aoki, S. ;
Aoki, Y. ;
Becirevic, D. ;
Blum, T. ;
Colangelo, G. ;
Collins, S. ;
Della Morte, M. ;
Dimopoulos, P. ;
Duerr, S. ;
Fukaya, H. ;
Golterman, M. ;
Gottlieb, Steven ;
Gupta, R. ;
Hashimoto, S. ;
Heller, U. M. ;
Herdoiza, G. ;
Horsley, R. ;
Juttner, A. ;
Kaneko, T. ;
Lin, C. -J. D. ;
Lunghi, E. ;
Mawhinney, R. ;
Nicholson, A. ;
Onogi, T. ;
Pena, C. ;
Portelli, A. ;
Ramos, A. ;
Sharpe, S. R. ;
Simone, J. N. ;
Simula, S. ;
Sommer, R. ;
Van de Water, R. ;
Vladikas, A. ;
Wenger, U. ;
Wittig, H. .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (02)
[3]   Analogue quantum chemistry simulation [J].
Argueello-Luengo, Javier ;
Gonzalez-Tudela, Alejandro ;
Shi, Tao ;
Zoller, Peter ;
Cirac, J. Ignacio .
NATURE, 2019, 574 (7777) :215-+
[4]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[5]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[6]   STRONG-COUPLING CALCULATIONS OF LATTICE GAUGE THEORIES - (1+1)-DIMENSIONAL EXERCISES [J].
BANKS, T ;
SUSSKIND, L ;
KOGUT, J .
PHYSICAL REVIEW D, 1976, 13 (04) :1043-1053
[7]  
Barbiero L., ARXIV181002777CONDMA
[8]  
Bazavov A., 2014, P 32 INT S LATT FIEL, P391
[9]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[10]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]